

Toward the joint design of electronic and optical layer protection

Eytan Modiano Massachusetts Institute of Technology

Eytan Modiano Infocom 2001 Slide 1

IP-over-WDM

- Networks use many layers
 - Inefficient, expensive
- Goal: reduced protocol stack
 - Eliminate electronic layers
 - Preserve functionality
- Joint design of electronic and optical layers
 - Medium access protocol
 - Topology reconfiguration
 - Efficient multiplexing (grooming)
 - Joint electronic/optical protection

- Survivable routing of logical topologies: How to embed the logical topology on a physical topology so that the logical topology can withstand physical link failures
- Physical topology design: How to design the physical topology so that it can be used to embed rings in a survivable manner
- *Path protection with failure localization:* What are the benefits of failure localization for path protection

- Physical Topology
 - Optical layer topology
 - Optical nodes (switches) connected by fiber links
- Logical Topology
 - Electronic layer topology; e.g., routers connected by *lightpaths* Lightpaths must be routed on the physical topology
 Lightpaths are established by tuning transceivers and switches

Routing the logical topology on a physical topology

- How do we route the logical topology on the physical topology so that we can keep the logical topology protected ?
 - Logical connections are lightpaths that can be routed in many ways on the physical topology
 - Some lightpaths may share a physical link in which case the failure of that physical link would cause the failure of multiple logical links
 For rings (e.g., SONET) this would leave the network disconnected
 - Need to embed the logical topology onto the physical topology to maintain the protection capability of the logical topology

- Protection provided at the electronic layer
 - E.g., SONET, ATM, IP
 - Physical layer protection is redundant
- However, must make sure that the protection provided at the electronic layer is maintained in the event of a physical link cut
- <u>Simple solution</u>: Route all logical (electronic) links on disjoint physical routes
 - E.g., physical and electronic topologies look the same
 - Approach may be wasteful of resources
 - Disjoint paths may not be available

- Route the lightpaths that constitute the electronic topology in such a way that the protection capability is maintained
- Examples:
 - Make sure logical topology remains connected in the event of a physical link failure
 - For SONET rings, make sure alternative route exists in the event of a physical link failure (same as topology remains connected)
- <u>Our focus</u>: Route the lightpaths of the logical topology so that it remains connected in the event of any single physical link failure

Eytan Modiano and Aradhana Narula-Tam, <u>"Survivable lightpath routing: A new approach to the design of WDM-based networks,"</u> IEEE Journal of Selected Areas in Communication, May 2002.

- Consider a graph (N, E)
 - A cut is a partition of the set of nodes N into subsets S and N-S
 - The *cut-set* CS(S,N-S) is the set of edges in the graph that connect a node in N to a node in N-S
 - The size of the cut-set is the number of edges in the cut-set

$$CS(S,N-S) = \{(1,2), (5,2), (5,3), (5,4)\}$$

Menger's Theorem: A logical topology is 2-connected if for every cut (S,S-N)

 $|CS(S,N-S)| \ge 2$

Eytan Modiano Infocom 2001 Slide 9

<u>Theorem 1</u>: A routing is survivable *if and only if* for every cut-set $CS(S,N_L-S)$ of the logical topology the following holds:

Let E(s,t) be the set of physical links used by logical link (s,t). Then, for every cut-set CS(S,N_L-S),

- The above condition requires that no single physical link is shared by all logical links belonging to a cut-set of the logical topology
 - not all of the logical links belonging to a cut-set can be routed on the same physical link
- This condition must hold for all cut-sets of the logical topology

Minimize $\sum_{\substack{(i,j)\in E\\(s,t)\in E_L}} f_{ij}^{st}$ Subject to:

A) Connectivity constraints:

$$\sum_{j \text{ s. t.}(i,j)\in E} f_{ij}^{st} - \sum_{j \text{ s. t.}(j,i)\in E} f_{ji}^{st} = \begin{cases} 1 & if \quad s=i\\ -1 & if \quad t=i\\ 0 & otherwise \end{cases}$$

B) Survivability constraints:

$$\begin{array}{l} \forall (i,j) \in E \\ \forall S \subset N_L \end{array}, \quad \sum_{(s,t) \in CS(S, N_L - S)} f_{ij}^{st} + f_{ji}^{st} < CS(S, N_L - S) \end{array}$$

C) Capacity constraints:
$$\forall (i, j) \in E, \qquad \sum_{(s,t) \in E_L} f_{ij}^{st} \leq W$$

D) Integer flow constraints: $f_{ij}^{st} \in \{0,1\}$

- Difficult for large networks due to the large number of constraints
 - Exponential number of cut-set constraints
- Solution for ILP can be found using branch and bound and other heuristic techniques
- Alternatively relaxations of the ILP can be found that remove some of the constraints
 - LP relaxation removes the integer constraints, but unfortunately solution becomes non-integer => can't determine the routings
 - Can relax some of the less critical survivability constraints
 Start with only a subset of the cut-set constraints, if survivable solution is found then done; otherwise add more cut-set constraints until survivable solution is found

- Single node cuts relaxation: Consider only those cuts that separate a single node from the rest of the network
 - Only N such cut-sets
 - Single node cuts are often the smallest and hence the most vulnerable
 - When network is densely connected most cuts contain many links and are not as vulnerable
- Small cut-sets relaxation: Consider only those cut-sets whose size is less than a certain size (e.g., the degree of the network, degree + 1, etc.)
 - This relaxation includes all the single node cuts, but some other small cuts as well
 - Appropriate for less densely connected networks

- Logical topologies
 - Randomly generated logical topologies of degrees 3, 4, 5
 100 randomly generated topologies of each size
- Physical topology
 - NSF NET (14 nodes, 21 links)

	Logical	Unprotected	Ave. Ave.	
	Top's	solution	links	λ*links
ILP	100	0	19.76	46.07
Short Path	100	86	19.31	45.25
Relax - 1	100	10	19.78	46.03
Relax - 2	100	0	19.78	46.07

	Logical Unprotected		Ave.	Ave.
	Top's	solution	links	λ*links
ILP	100	0	20.30	60.64
Short Path	100	38	20.17	60.47
Relax - 1	100	0	20.30	60.64
Relax - 2	100	0	20.30	60.64

	Logical	Unprotected	Ave. Ave.	
	Top's	solution	links	λ*links
ILP	100	0	20.56	75.40
Short Path	100	27	20.48	75.31
Relax - 1	100	0	20.56	75.40
Relax - 2	100	0	20.56	75.40

Eytan Modiano Infocom 2001 Slide 17

Run times of algorithms

	ILP	Relaxation - 1	Relaxation - 2
Degree - 3	8.3 s	1.3 s	1.3 s
Degree - 4	2 min. 53 sec.	1.5 s	1.5 s
Degree - 5	19 min. 17 sec.	2.0 s	2.0 s

Sun Sparc Ultra 10 computer

Eytan Modiano Infocom 2001 Slide 18

- Widely used topology (e.g., SONET rings)
- Ring topology yields simple solutions
 - It can be easily shown that every cut of a bi-directional ring contains exactly two links
 - It can also be shown that every pair of links shares a cut
- Corollary: A bi-directional logical ring is survivable if and only if no two logical links share the same physical link
 - The proof is a direct result of Theorem 1
 - Cut-set constraints can be replaced by a simple capacity constraint on the links

$$\forall (i, j) \in L, \quad \sum_{(s,t) \in E_L} f_{ij}^{st} + \sum_{(s,t) \in E_L} f_{ji}^{st} \le 1$$

Eytan Modiano Infocom 2001 Slide 19

<u>Theorem 2</u>: The survivable routing problem is NP-complete

Proof: Mapping of ring survivable routing to k edge disjoint paths in undirected graphs

Two-edge disjoint paths

Four-edge disjoint paths

Eytan Modiano Infocom 2001 Slide 20

Ring experiments

Physical topologies:

6 nodes

10 nodes

- Logical topologies:
 - All possible 6 node logical rings (120 possible) on 6 node physical
 - All possible 6,7,8,9, and 10 node rings on 10 node physical

- Survivable routing ILP solution
 - Guarantees survivable routing whenever one exists
- Shortest path routing
 - Find the shortest path for every lightpath regardless of survivability
- Greedy routing
 - Route lightpaths sequentially using shortest path
 - Whenever a physical link is used by a lightpath, it is removed so that it cannot be used by any other lightpath Takes advantage of the fact that for ring logical topologies no two lightpaths can share a physical link

Eytan Modiano Infocom 2001 Slide 23

	Logical	No protected	Ave.	Ave.
	Top's	solution	links	λ*links
6 node-ILP	120	0	7.4	7.4
6 node - SP	120	64 (53%)	6.4	7.2
6 node - GR	120	0	8.1	8.1
10 node-ILP	362880	33760 (9%)	17.8	17.8
10 node - SP	362880	358952 (99%)	11.8	15.5
10 node - GR	362880	221312 (61%)	18.4	N/A

Eytan Modiano Infocom 2001 Slide 24

- Survivable routing of logical topologies
- Physical topology design
- Path Protection with failure localization

Physical Topology Design: Embedding Survivable Rings

- N node Network: Embed all permutations of rings of size K<= N
 - There are $\binom{N}{K}(K-1)!$ rings of size K
- Typical physical topologies are not conducive to embedding rings in survivable manner

- 11 Node NJ LATA
- Supports only 56% of all 9 node rings

- Goal: Design physical topologies that can support survivable logical rings
 - Use minimum number of physical links
- A. Narula-Tam, E. Modiano, A. Brzezinski, <u>"Physical Topology Design for Survivable Routing</u> of Logical Rings in WDM-Based Networks," IEEE JSAC, October, 2004.

Eytan Modiano Infocom 2001 Slide 26

- Under what condition can one embed any ring logical topology on a given physical topology
 - Want to design a physical topology that can support all possible ring logical topologies

Service provider that receive requests for ring topologies and wants to make sure that he can support all requests in a survivable manner

Theorem 3: In order for a physical topology to support any possible ring logical topology, any cut of the physical topology (S, N-S),

$$\left| CS_{P}(S, N-S) \right| \ge 2 \min(|S|, |N-S|)$$

Eytan Modiano Infocom 2001 Slide 27

- Theorem 3 provides insights on physical topology design
 - E.g., all neighbors of degree 2 nodes must have degree ≥ 4
- Theorem 4: The number of links that an N node physical topology must have in order to guarantee survivable routing of K node logical rings is given by:

Logical Ring	Physical link	
Size	requirement	
<i>K</i> = 4	4 <i>N</i> /3	
<i>K</i> = 6	3 N/ 2	
K = 8	1.6 N	
K = N - 1	2N - 3	

• Proof: by repeated application of Theorem 3

Lemma: Any node of degree 2 must have physical links to nodes of degree 4 or higher.

Proof: Suppose a node of degree 2 has a physical link to a node of degree 3, then the cut-set consisting of the degree 2 node and its degree 3 neighbor contains only 3 links. However, since the cut-set contains two nodes, *Theorem 3* requires a minimum of 4 cut-set links.

Let d_i be the number of nodes with degree i in the physical topology. Then the number of links in the physical topology is

$$L = \sum_{i=2}^{N-1} \frac{id_i}{2} = d_2 + \frac{3d_3}{2} + \sum_{i=4}^{N-1} \frac{id_i}{2}$$

From lemma 1:
$$d_2 \le \sum_{i=4}^{N-1} \frac{i}{2} d_i \longrightarrow L \ge 2d_2 + \frac{3}{2}d_3$$
 (1)

Also, since nodes of degree i, add a minimum of i/2 physical links we get:

$$L \ge \frac{2d_2 + 3d_3 + 4(N - d_2 - d_3)}{2} = 2N - d_2 - \frac{d_3}{2} \qquad (2)$$
(1) & (2) => $L \ge \max(2d_2 + \frac{3}{2}d_3, 2N - d_2 - \frac{d_3}{2})$

Eytan Modiano Infocom 2001 Slide 30

Proof, cont.

$$L \ge \max(2d_2 + \frac{3}{2}d_3, 2N - d_2 - \frac{d_3}{2})$$

Minimum occurs when

$$d_2 = \frac{2N - 2d_3}{3}$$

 $2d_2 + \frac{3}{2}d_3 = 2N - d_2 - \frac{d_3}{2}$

$$L \ge \frac{4N}{3} + \frac{d_3}{6} \ge \frac{4N}{3}$$

Similar arguments for proving the K=6 and K=8 cases

K=N-2 case: Show that we can find an N-2 node logical topology that requires at least 2(N-2) links

Eytan Modiano Infocom 2001 Slide 31

Integer Linear Program (ILP) Problem Formulation

- Embed batch of R random rings of size K
- Start with a fully connected physical topology with cost of each physical link = 1
 - Minimize number of physical links used to embed all R rings
- ILP results
 - Solvable for small instances
 - Yields insights on properties of appropriate physical topologies

E.g., solutions tend to have a "multi-hub" architecture

Eytan Modiano Infocom 2001 Slide 32

Physical Topologies for Embedding Logical Rings

• Dual hub architecture

- N nodes, 2(N-2) bi-directional links
- Supports all logical rings of size ≤ N-2
- Uses minimal number of physical links
- With additional link can support all logical rings of size \leq N-1

Physical Topology for Embedding Rings of Size N

- Embedding rings of size N is considerably more difficult
- Three hub architecture
- Requires 3N–6 physical links
- Recall, rings of size N-1 required 2N-3 physical links
- Can we do better?

- Survivable routing of logical topologies
- Physical topology design
- Path Protection with failure localization

Path Protection and Link Protection

Protection Schemes	PP	LP
Major Feature	Link-Disjoint	Localization
Resource Efficiency	High	Low

Eytan Modiano Infocom 2001 Slide 36

 System specifies an end-to-end backup path to each link along the primary path

Link on Primary Path (1-2-3-5-4)	Corresponding Protection Path
(1,2)	1-6-2-3-5-4
(2,3)	1-2-5-4
(3,5)	1-2-5-4
(5,4)	1-2-3-4

Eytan Modiano Infocom 2001 Slide 37

Eytan Modiano Infocom 2001 Slide 38

- Batch call arrival
 - Typical of a static routing and wavelength assignment problem
 - Usually done for the purpose of logical topology design
 - Requires solving for primary and backup paths for all sessions simultaneously
- Dynamic (random) call arrivals
 - Call-by-call model
 Poisson call arrivals
 Exponential holding times
 - Resources are allocated on a call by call basis, depending on network state information

Our focus: Dynamic call-by-call model

- Greedy approach: Solving MILP problems
 - Guarantee minimum resource used by each call
 - Computationally complex
- Heuristic approach: Seeking the shortest paths
 - Not guaranteed to use the minimum resources to serve a call
 - Computationally simple (e.g. Dijkstra's algorithm)

Question: Does system achieve optimal resource utilization if each call is served using the minimum resources?

MILP Formulation for PPFL

 $\sum c_{ij}x_{ij} + \sum y_{ij}$ Minimize $(i,j) \in L$ $(i,j) \in L$ $\sum x_{Sj} - \sum x_{jS} = \sum x_{jD} - \sum x_{Dj} = 1,$ Subject to $(S,j)\in L$ $(j,S)\in L$ $(j,D)\in L$ $(D,j)\in L$ $\sum x_{ij} - \sum x_{ji} = 0, \quad \forall i \neq S, D,$ $(i,j) \in L$ $(j,i) \in L$ $\sum v_{ij}^{Sl} - \sum v_{ij}^{lS} \ge x_{ij}, \quad \forall (S,l), (l,S), (i,j) \in L,$ $(S,l) \in L$ $(l,S) \in L$ $\sum v_{ij}^{lD} - \sum v_{ij}^{Dl} \ge x_{ij}, \quad \forall (D,l), (l,D), (i,j) \in L,$ $(l,D)\in L$ $(D,l)\in L$ $\sum v_{ij}^{lk} - \sum v_{ij}^{kl} = 0, \quad \forall (i,j) \in L, \forall k \neq S, k \neq D,$ $(l,k) \in L$ $(k,l) \in L$ $v_{ij}^{ij} + v_{ji}^{ij} = 0, \quad \forall (i,j) \in L,$ $y_{lk} \ge d_{ij}^{lk}(v_{ij}^{lk} - x_{lk}), \forall (i, j), (l, k) \in L,$ $x_{ij} \ge v_{ij}^{lk}, \quad \forall (i,j), (l,k) \in L,$ $x_{ij}, y_{ij}, v_{ij}^{lk} \in \{0, 1\}, \forall (i, j), (l, k) \in L.$

Laboratory for Information and Decision Systems

E Infocom 2001 Slide 41

Example: Greedy vs. Shortest Path heuristic

	SD Pair	Primary Path	Protection Path (protected link)	Total Number of Occupied Wavelengths
Croady	(1,4)	1-2-3-4	1-6-5-4 (1-2-3-4)	6 (no sharing)
Annroach	(6,3)	6-5-3	6-2-3 (6-5-3)	10 (no sharing)
Approach	(3,5)	3-5	3-2-5 (3-5)	13 (no sharing)
Heuristic Approach	(1,4)	1-2-3-4	1-6-2-3-4 (1-2) 1-2-5-4 (2-3) 1-2-5-4 (3-4)	7 (share (2-3-4))
	(6,3)	6-5-3	6-2-3 (6-5) 6-2-3 (5-3)	10 (share (6,2))
	(3,5)	3-5	3-2-5 (3-5)	12 (share (2,5))

Shortest path heuristic may provide greater opportunity for future sharing of backup paths

Eytan Modiano Infocom 2001 Slide 42

Simulation: The 11 node, 21 link New Jersey Lata Network

Eytan Modiano Infocom 2001 Slide 43

Simulation Results Blocking Probability vs. Traffic Load

Eytan Modiano Infocom 2001 Slide 45

Simulation Results Blocking Probability vs. Traffic Load

- In the dynamic call-by-call case a greedy solution that finds the optimal routes at any point in time fails to take into account future calls
- In order to account for future call arrivals, the problem can be modeled as a Markov Decision Problem (e.g., dynamic programming)
 - Solution can be very complex
- Intuitive explanation:
 - The greedy solution treats primary and backup resources with equal importance and attempts to minimize their overall use
 - However, primary path resources cannot be shared whereas backup can Better to minimize primary resources than backup resources
 - The shortest path approach puts a greater priority on minimizing the primary path resources

- The PPFL scheme is more flexible than the path protection scheme
 - Path protection and link protection can be viewed as "solutions" to the PPFL scheme
 - Hence PPFL results in better resource utilization
- PPFL uses local failure information for finding protection paths
 - This added information requires more sophisticated network management
- The call-by-call model leads to dynamic resource allocation scheme that cannot be solved using a traditional ILP approach
 - Markov Decision formulation too complex
 - Simple heuristics e.g., shortest path

- Cross-Layer optimization is critical to the design of protection algorithms for WDM based networks
 - Survivable routing of logical topologies: How do we embed the logical topology on a physical topology so that the logical topology can withstand physical link failures
 - Physical topology design: How do we design physical topology so that they can be used to embed rings in a survivable manner
 - Path protection with failure localization: What are the benefits of failure localization for efficient path protection?