Randomized Algorithms for Network Security and Peer-to-Peer Systems

Micah Adler University of Massachusetts, Amherst

Talk Outline

- Probabilistic Packet Marking for IP Traceback
 - Network Security
 - Appeared in STOC 2002
- Load balancing in Peer-to-peer networks
 - A Stochastic Process on the Hypercube
 - Joint work with Eran Halperin, Richard Karp, and Vijay Vazirani.
 - Appeared in STOC 2003
- More details: www.cs.umass.edu/~micah

The IP Traceback Problem

• Denial of Service Attacks:

- Attacker sends MANY packets to victim.
- Denies access to legitimate users.
- Difficulties:
 - Source of packets can be forged.
 - Tools for coordinating from multiple locations.
- Enforcing accountability: the IP Traceback

problem.

– Determine the source of a stream of packets.

Probabilistic Packet Marking

- Suggested in [BurchC2000].
- Protocol of [SavageWKA2000]
 - Reserve header bits for IP Traceback
 - Each router on path of packet:
 - With small probability:
 - Write IP address into header; reset hop count.
 - Otherwise: increment hop count.
 - Victim of attack receives many packets:
 - Can reconstruct entire path (with high

Existing Work

- Elegant protocol: produced flurry of research.
 - [DoeppnerKK2000]
 - [LeeS2001]
 - [DeanFS2001]
 - [ParkL2001]
 - [SongP2001]
- Objectives include:
 - Reducing header bits required.
 - Full protocol of Savage *et al*: 16 bits.
 - Robustness against multiple paths of attack.

New results: single path of attack

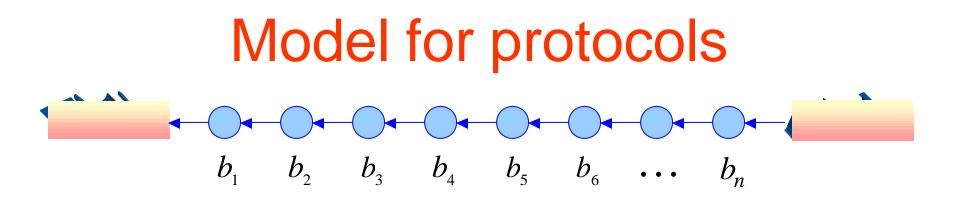
- New technique for probabilistic marking:
 - One header bit is sufficient.
 - Number of packets require $O(2^{2n})$
 - n: number of bits to describe path.
 - Any protocol that uses one b $\Omega(2^{2n})$
- Number of header bits used: b
 - Packets required by optimal protoco $\underline{\mathcal{P}}^{\Theta(n/2^b)}$
 - Grows exponentially with *n*.
 - Decreases DOUBLY exponentially with b.

New results: many paths of attack

- Number of paths attacker can use: k
- Lower bound:

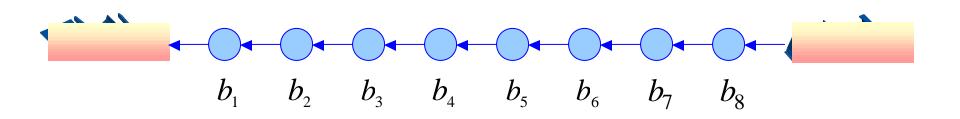
- For any valid protocol $b = \log(2k-1)$.

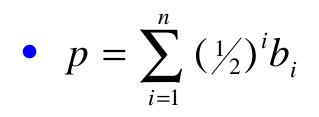
- Protocol: $b = \log(2k+1)$ sufficient.
 - Requires restrictions on attacker.
 - Introduces powerful new coding technique.
 - New use of Vandermonde matrices.



- Path of length *n*: each node has one bit.
- Objective: inform victim of all *n* bits.
 - Easy to adapt to IP Traceback over Internet.
- Attacker sends *b*-bit packets along path.
 - Chooses initial setting of packets.
- Requirement on intermediate nodes:
 - No state information.

- Idea: encode bits $b_1 \dots b_n$ into $-p = \Pr[\text{bit received by victim} = 1]$
- Packets provide estimate of *p*.





- Protocol for each node *i*:
 - : bit received from predecessor.
 - b_r bit known to *i*.
 - Probability node *i* forwards 1:

$$b_{r} = 0 \quad b_{r} = 1$$

$$b_{i} = 0 \quad 0 \quad \frac{1}{2}$$

$$b_{i} = 1 \quad \frac{1}{2} \quad 1$$

i=1

- Claim: if initial bit set to $0:p = \sum (\frac{1}{2})^i b_i$
- Proof: Proof: $-b_s$: bit sent by node. b_s b_r b_i

 - If $b_i = 0$ then $\Pr[b_s = 1] = \Pr[b_r = 1]/2$
 - If $b_i = 1$ then $\Pr[b_s = 1] = \Pr[b_r = 1]/2 + 1/2$
- Problem: attacker might set initial bit to $p = (\frac{1}{2})^{n} + \sum_{i=1}^{n} (\frac{1}{2})^{i} b_{i}$ 1. i=1

• Solution:
$$b_r = 0$$
 $b_r = 1$
 $\frac{b_i = 0}{b_i = 1}$ $\frac{1}{2} - e$
 $\frac{b_i = 1}{b_i = 1}$ $\frac{1}{2}$ $1 - e$

• If victim knows p within $\pm \frac{1}{e} (\frac{1}{2} - e)^{-n}$ - All bits in path can be decoded.

•
$$O((\frac{1}{2}-e)^{-2n})$$
 packets sufficient (w.h.p.)

Extension to b bits.

• Computing p w/precision $1/2^n$:

- requires $q(2^{2n})$ packets.

Idea: use added bits to reduce precision
 needed. p
 (b-1)-bit counter

- Protocol for each node:
 - Increment (b-1)-bit counter.
 - If counter overflows, perform 1 b $\frac{2}{4}$ protocol.
- Effective path length reduced by

Extension to *b* bits.

- Problem: How to guarantee victim sees all bits?
 - If attacker always sets initial bits the same

Victim only sees one type of counter.

• Only provides $n/2^{b-1}$ bits on path.

• Solution:

- Each node resets counter w/small probability.

Extension to *b* bits.

- Decoding:
 - More involved than single bit case.
 - Practical algorithm for decoding in software. $O(bn^2 2^b 2^{2n/2^{b-1}})$
 - Sufficient: packets.
- Proof of correctness fairly involved. $\Omega \left(2^b 2^{n/2^b} \right)$
- Lower bound for any protocol:

Lower Bound.

Theorem: for any protocol using less than

 $\Omega\left(2^{b}2^{n/2^{b}}\right)$ packets, $\Pr[wrong] \ge \frac{1}{2}$ • Model:

– Network sends *n*-bit string to victim.

- Communication: *b*-bit packets.
- Requirement: network has no memory.

Wrapup of Probabilistic Packet Marking

- Summary:
 - Significantly more efficient new encoding technique.
 - Tradeoff header bits for packets.
 - Simple enough to be practical.
 - Multiple paths (many open problems . . .).
- Other related work:
 - Simulation experiments: tradeoffs seen in practice.
 - Joint work with Q. Dong and K. Hirata
 - Applications of PPM to congestion control.
 - Joint work with J. Cai, J. Shapiro, and D.

Talk Outline

- Probabilistic Packet Marking for IP Traceback
 - Network Security
 - Appeared in STOC 2002
- Load balancing in Peer-to-peer networks
 - A Stochastic Process on the Hypercube
 - Joint work with Eran Halperin, Richard Karp, and Vijay Vazirani.
 - Appeared in STOC 2003
- More details: www.cs.umass.edu/~micah

Coupon Collector's Problem

- Objective: collect each of *n* coupons.
 - Each step: receive one random coupon.
 - Well known: $n \log n \pm o(n \log n)$ steps required to obtain every coupon (whp).
- Natural variant:
 - Each step: check log *n* random coupons.
 - -Receive one coupon if any are

Structured Coupon Collector's Problem

- Underlying graph G=(V,E).
- Initially: all vertices uncovered.
- Each step: choose random vertex v.
 - If V uncovered, cover it.
 - Else if any neighbors of *V* uncovered,
 - cover random neighbor.
- How many steps until all vertices covered?

Outline of rest of talk

 Application: distributed hash tables (DHTs).

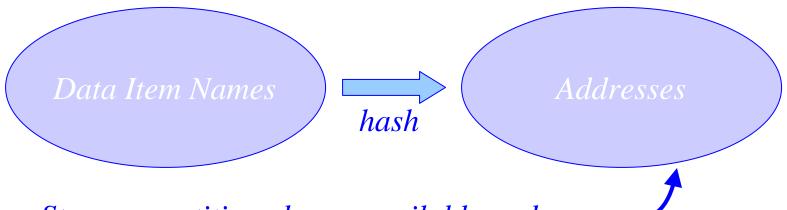
- Fundamental tool for Peer-to-Peer Networks.

- Load balancing in DHTs:
 - Analyze w/vertex covering process on hypercube.
- Theorem:

O(*n*) steps enough for log *n*-degree hypercube (whp)

• Implication: asymptotically optimal load

Distributed hash tables

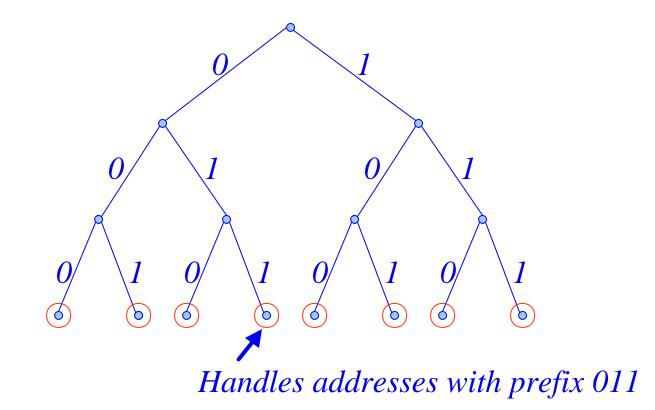


Storage partitioned over available nodes_____

Objectives:

- Find data items quickly.
- Balance load fairly.

Partitioning the address space Strategy: maintain binary tree w/nodes at leaves

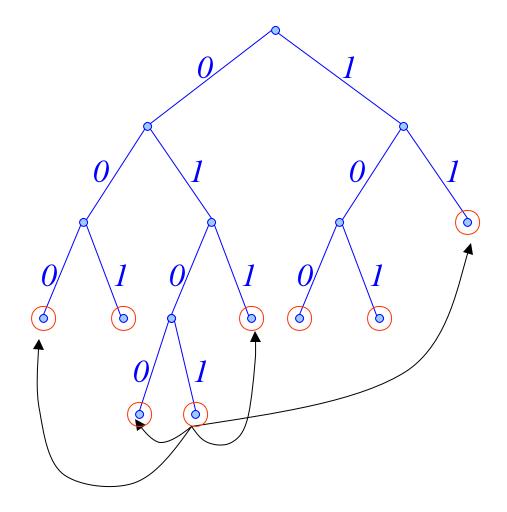


Based on DHT of [RFHKS 2001] called CAN

Finding region of address Space • Nodes maintain pointers to each other:

- Complete binary tree: pointers are hypercube
 - Nodes adjacent iff hamming distance = 1.
- New arrival:
 - Choose leaf node; split into two new leaves.
 - Node adjacency rule: truncate longer string.

Resulting distributed hash table:



Performance of DHT with n nodes:

- Depends on rule for choosing node to split.
- Pointers per node: O(log n)
- Queries to locate content: Q(log n) *x*∈nodes
- Load balance:

V(x)

-V(x): fraction of address space stored at x.

x∈nodes

•
$$V(x) = 2^{-depth(x)}$$

Rules for choosing node to split

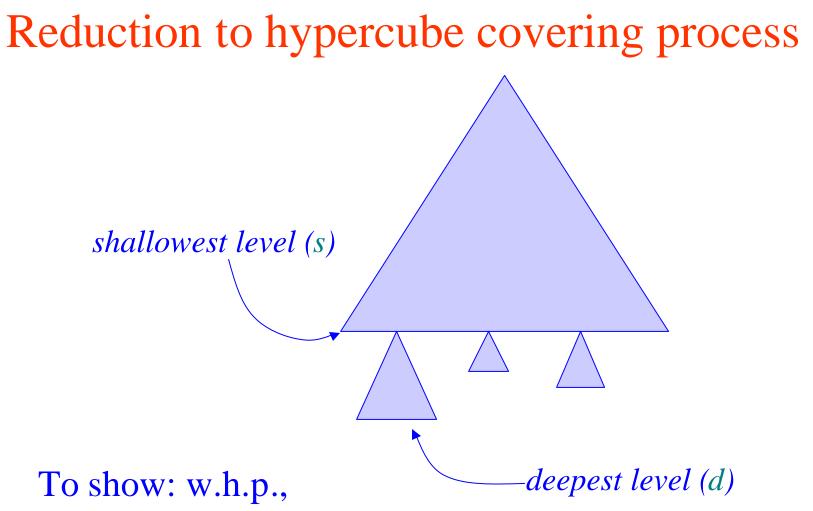
- Simple rule:
 - Choose hash address uniformly at random.
 - Split node storing that address.
 - Resulting load balance: T (log n) w.h.p.
- Our main contribution: analyze a better rule.
 - Choose node as in simple rule.
 - Split shallowest neighbor of that node.
 - Resulting load balance: O(1) w.h.p.
 - First O(1) with O(log n) pointers,

Previous Work

- CAN [RFHKS 2001]: *k*-Dim. Torus
 - Our hypercubic DHT is CAN with k = 8
 - -Suggested both splitting rules.
 - No analysis of resulting load balance.
- Pastry [RD 2001], Tapestry [ZKJ 2001]
 - Based on [PRR 1997]
 - Pointers, queries, load balance, all T (log n)

More Previous Work

- Chord [SMKKB 2001]:
 - Pointers, queries, load balance, all T (log n)
 - Additional techniques:
 - load balance O(1) but pointers T (log² n)
- Viceroy [MNR 2002]:
 - Pointers O(1), queries T (log n).
 - Does not address load balance.
 - Combine with technique from [SMKKB 2001]:
 - Results similar to ours.



- $d \log n$ not too large.
- $\log n s$ not too large (hypercube process).

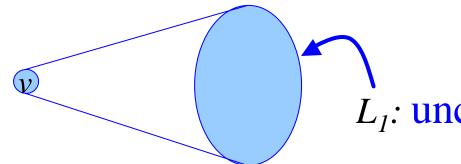
No node "falls behind"

- Consider progress of nodes at level s:
 - Each arrival is step of covering process.
 - Node is covered when it is split.
- Theorem:
 - Vertex covering process on *n*-node
 hypercube: O(*n*) steps sufficient w.h.p.
- Corollary:

 $-\log n - s$ is always O(1) w.h.p.

Easier result: O(n loglog n) steps.

- loglog n phases of O(n) steps each.
- w.h.p.: at end of phase *i*:
 - Each node has $< log n / 2^i$ uncovered neighbors.

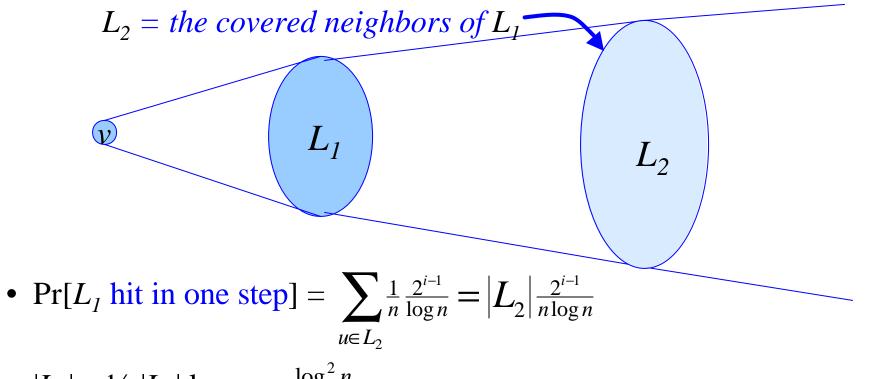


 L_1 : uncovered neighbors of v.

What is $\Pr[\operatorname{hit} L_1 \operatorname{during step of phase } i]$?

• Assume $\log n / 2^{i-1} = |L_1| = \log n / 2^i$

Easier result: O(n loglog n) steps.



•
$$|L_2| = \frac{1}{4} |L_1| \log n = \frac{\log^2 n}{2^{i+2}}$$

•Thus: $\Pr[L_1 \text{ hit in one step}] = \frac{\log n}{8n}$

•Chernoff bounds: Pr[Any L₁ not halved in phase]: 1/poly(n).

Why O(n) seems possible.

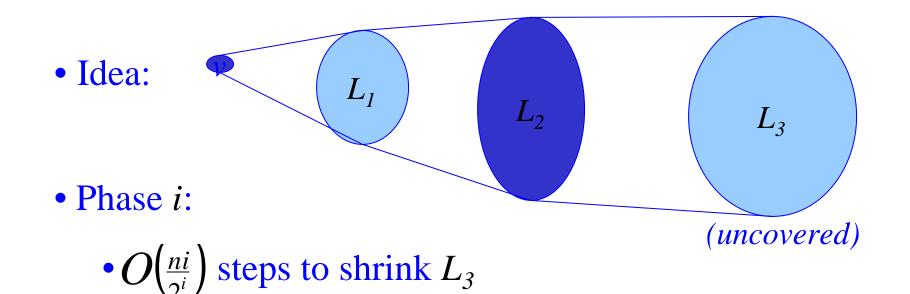
Phase *i*: expected steps until L_1 halved:

- L_1 has size log $n / 2^i$.
- $\Pr[L_1 \text{ hit in one step}] = \frac{\log n}{8n}$

• Expected steps:
$$O\left(\frac{n}{2^i}\right)$$

- O(n) steps guarantees $O(\log n)$ expected hits.
 - **Pr**[not halving] = $1/n^c$

Intuition for a bound of O(*n*).



- L_3 larger, so more likely to be close to expectation
- $\Pr[L_1 \text{ hit in a step}] = \frac{2^i \log n}{n}$ • $O\left(\frac{n}{2^i}\right)$ steps sufficient to halve all L_1 s whp.

Extensions:

• Sufficient (whp) for any *d*-regular graph:

$$O(n(1+\frac{\log n \cdot \log d}{d}))$$

• Sufficient whp for random *d*-regular graphs: $O(n(1 + \frac{\log n}{d}))$

All results hold if never cover chosen node.

Open problems for stochastic process

- Adding deletions
- Improving the constants
- O(n) for all log n-regular graphs ?