Randomized Algorithms for Network Security and Peer-to-Peer Systems

Micah Adler
University of Massachusetts, Amherst

Talk Outline

- Probabilistic Packet Marking for IP Traceback
- Network Security
- Appeared in STOC 2002
- Load balancing in Peer-to-peer networks
- A Stochastic Process on the Hypercube
- Joint work with Eran Halperin, Richard Karp, and Vijay Vazirani.
- Appeared in STOC 2003
- More details: www.cs.umass.edu/~micah

The IP Traceback Problem

- Denial of Service Attacks:
- Attacker sends MANY packets to victim.
- Denies access to legitimate users.
- Difficulties:
- Source of packets can be forged.
- Tools for coordinating from multiple locations.
- Enforcing accountability: the IP Traceback problem.
- Determine the source of a stream of packets.

Probabilistic Packet Marking

- Suggested in [BurchC2000].
- Protocol of [SavageWKA2000]
- Reserve header bits for IP Traceback
- Each router on path of packet:
- With small probability:
- Write IP address into header; reset hop count.
- Otherwise: increment hop count.
- Victim of attack receives many packets:
- Can reconstruct entire path (with high nrohnhility

Existing Work

- Elegant protocol: produced flurry of research.
- [DoeppnerKK2000]
- [LeeS2001]
- [DeanFS2001]
- [ParkL2001]
- [SongP2001]
- Objectives include:
- Reducing header bits required.
- Full protocol of Savage et al: 16 bits.
- Robustness against multiple paths of attack.

New results: single path of attack

- New technique for probabilistic marking:
- One header bit is sufficient.
- Number of packets required $\mathscr{O}\left(2^{2 n}\right)$
- n : number of bits to describe path.
- Any protocol that uses one b $\&\left(2^{2 n}\right)$
- Number of header bits used: b
- Packets required by optimal protoco $2^{\Theta\left(n / 2^{b}\right)}$
- Grows exponentially with n.
- Decreases DOUBLY exponentially with b.

New results: many paths of attack

- Number of paths attacker can use: k
- Lower bound:
- For any valid protocol $b=\log (2 k-1)$.
- Protocol: $b=\log (2 k+1)$ sufficient.
- Requires restrictions on attacker.
- Introduces powerful new coding technique.
- New use of Vandermonde matrices.

Model for protocols

- Path of length n : each node has one bit.
- Objective: inform victim of all n bits.
- Easy to adapt to IP Traceback over Internet.
- Attacker sends b-bit packets along path.
- Chooses initial setting of packets.
- Requirement on intermediate nodes:
- No state information.

The one bit scheme

- Idea: encode bits $b_{1} \ldots b_{n}$ into

$$
-p=\operatorname{Pr[bit~received~by~victim~=~1]~}
$$

- Packets provide estimate of p.

The one bit scheme

- Protocol for each node i :
- : bit received from predecessor.
- b_{r} bit known to i.
- Póbobability node iforwards 1 :

	$b_{r}=0$	$b_{r}=1$
$b_{i}=0$	0	$1 / 2$
$b_{i}=1$	$1 / 2$	1

The one bit scheme

- Claim: if initial bit set to $0 ; p=\sum_{i=1}^{n}(1 / 2)^{i} b_{i}$
- Proof:
$-b_{s}$: bit sent by node.

b_{i}
- If $b_{i}=0$ then $\operatorname{Pr}\left[b_{s}=1\right]=\operatorname{Pr}\left[b_{r}=1\right] / 2$
- If $b_{i}=1$ then $\operatorname{Pr}\left[b_{s}=1\right]=\operatorname{Pr}\left[b_{r}=1\right] / 2+1 / 2$
- Problem: attacker might set initial bit to

1. $p=(1 / 2)^{n}+\sum_{i=1}^{n}(1 / 2)^{i} b_{i}$

The one bit scheme

- Solution:

	$b_{r}=0$	$b_{r}=1$
$b_{i}=0$	0	$1 / 2-\varepsilon$
$b_{i}=1$	$1 / 2$	$1-\varepsilon$

- If victim knows p within士 $\frac{1}{\varepsilon}(1 / 2-\varepsilon)^{-n}$
- All bits in path can be decoded.
- $O\left((1 / 2-\varepsilon)^{-2 n}\right)$ packets sufficient (w.h.p.)

Extension to b bits.

- Computing $p \mathrm{w} /$ precision $/ 2^{n}$ - require $\bigoplus\left(2^{2 n}\right)$ packets.
- Idea: use added bits to reduce precision needed. $p(b-l)$-bit counter
- Protocol for each node:
- Increment ($b-1$)-bit counter.
- If counter overflows, perform 1 bit protocol.
- Effective path length reduced by

Extension to b bits.

- Problem: How to guarantee victim sees all bits?
- If attacker always sets initial bits the same Victim only sees one type of counter.
- Only provides $n / 2^{b-1}$ bits on path.
- Solution:
- Each node resets counter w/small probability.

Extension to b bits.

- Decoding:
- More involved than single bit case.
- Practical algorithm for decoding in
software. $O\left(b n^{2} 2^{b} 2^{2 n / 2^{b-1}}\right)$
- Sufficient:
packets.
- Proof of correctness fairly involved. $\left(2^{b} 2^{n / 2^{b}}\right)$
- Lower bound for any protocol:
- Lower bound for any protocol:

Lower Bound.

- Theorem: for any protocol using less than
- Model:

$$
\Omega\left(2^{b} 2^{n / 2^{b}}\right) \text { packets, } \operatorname{Pr}[\text { wrong }] \geq 1 / 2
$$

- Network sends n-bit string to victim.
- Communication: b-bit packets.
- Requirement: network has no memory.

Wrapup of Probabilistic Packet Marking

- Summary:
- Significantly more efficient new encoding technique.
- Tradeoff header bits for packets.
- Simple enough to be practical.
- Multiple paths (many open problems . . .).
- Other related work:
- Simulation experiments: tradeoffs seen in practice.
- Joint work with Q. Dong and K. Hirata
- Applications of PPM to congestion control.
- Joint work with J. Cai, J. Shapiro, and D.

Talk Outline

- Probabilistic Packet Marking for IP Traceback
- Network Security
- Appeared in STOC 2002
- Load balancing in Peer-to-peer networks
- A Stochastic Process on the Hypercube
- Joint work with Eran Halperin, Richard Karp, and Vijay Vazirani.
- Appeared in STOC 2003
- More details: www.cs.umass.edu/~micah

Coupon Collector's Problem

- Objective: collect each of n coupons.
-Each step: receive one random coupon.
- Well known: $n \log n \pm 0(n \log n)$ steps required to obtain every coupon (whp).
- Natural variant:
-Each step: check log n random coupons.
-Receive one coupon if any are

Structured Coupon Collector's Problem

- Underlying graph $G=(V, E)$.
- Initially: all vertices uncovered.
- Each step: choose random vertex v.
- If v uncovered, cover it.
- Else if any neighbors of V uncovered,
- cover random neighbor.
- How many steps until all vertices covered?

Outline of rest of talk

- Application: distributed hash tables
(DHTs).
- Fundamental tool for Peer-to-Peer Networks.
- Load balancing in DHTs:
- Analyze w/vertex covering process on hypercube.
- Theorem:
$\mathrm{O}(n)$ steps enough for $\log n$-degree hypercube
- Implication: asymptotically optimal Ioad

Distributed hash tables

Objectives:

- Find data items quickly.
- Balance load fairly.

Partitioning the address space

Strategy: maintain binary tree w/nodes at leaves

Handles addresses with prefix 011
Based on DHT of [RFHKS 2001] called CAN

Finding region of address

space

- Nodes maintain pointers to each other:

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	0	0	0	0	0	0	0

- Complete binary tree: pointers are hypercube
- Nodes adjacent iff hamming distance $=1$.
- New arrival:
- Choose leaf node; split into two new leaves.
- Node adjacency rule: truncate longer string.

Resulting distributed hash table:

Performance of DHT with n nodes:

- Depends on rule for choosing node to split.
- Pointers per node: O(log n)
- Queries to locatifagentent: Pithq9 n)
$V(x)$
$-V(x)$: fraction of address space stored at x.
- $V(x)=2^{-\operatorname{depth}(x)}$

Rules for choosing node to split

- Simple rule:
- Choose hash address uniformly at random.
- Split node storing that address.
- Resulting load balance: $\mathrm{T}(\log n)$ w.h.p.
- Our main contribution: analyze a better rule.
- Choose node as in simple rule.
- Split shallowest neighbor of that node.
- Resulting load balance: O(1) w.h.p.
- First $\mathrm{O}(1)$ with $\mathrm{O}(\log n)$ pointers,

Previous Work

- CAN [RFHKS 2001]: k-Dim. Torus
- Our hypercubic DHT is CAN with $k=8$
-Suggested both splitting rules.
- No analysis of resulting load balance.
- Pastry [RD 2001], Tapestry [ZKJ 2001]
- Based on [PRR 1997]
- Pointers, queries, load balance, all T (log n)

More Previous Work

- Chord [SMKKB 2001]:
- Pointers, queries, load balance, all T (log n)
- Additional techniques:
- load balance $\mathrm{O}(1)$ but pointers $\mathrm{T}\left(\log ^{2} n\right)$
- Viceroy [MNR 2002]:
- Pointers $\mathrm{O}(1)$, queries $\mathrm{T}(\log n)$.
- Does not address load balance.
- Combine with technique from [SMKKB 2001]:
- Results similar to ours.

Reduction to hypercube covering process

- $d-\log n$ not too large.
- $\log n-s$ not too large (hypercube process).

No node "falls behind"

- Consider progress of nodes at level s :
- Each arrival is step of covering process.
- Node is covered when it is split.
- Theorem:
- Vertex covering process on n-node hypercube: $\mathrm{O}(n)$ steps sufficient w.h.p.
- Corollary:
$-\log n-s$ is always $O(1)$ w.h.p.

Easier result: $\mathrm{O}(n \log \log n)$ steps.

- $\log \log n$ phases of $\mathrm{O}(n)$ steps each.
- w.h.p.: at end of phase i :
- Each node has $<\log n / 2^{i}$ uncovered neighbors.

$L_{1}:$ uncovered neighbors of v.

What is $\operatorname{Pr}\left[\right.$ hit L_{l} during step of phase $\left.i\right]$?

- Assume $\log n / 2^{i-1}=\left|L_{l}\right|=\log n / 2^{i}$

Easier result: $\mathrm{O}(n \log \log n)$ steps.

- $\operatorname{Pr}\left[L_{1}\right.$ hit in one step $]=\sum_{u \in L_{2}} \frac{1}{n} \frac{2^{i-1}}{\log n}=\left|L_{2}\right| \frac{i^{i-1}}{n \log n}$
- $\left|L_{2}\right|=1 / 4\left|L_{l}\right| \log \mathrm{n}=\frac{\log ^{2} n}{2^{i+2}}$
-Thus: $\operatorname{Pr}\left[L_{l}\right.$ hit in one step] $=\frac{\log n}{8 n}$
- Chernoff bounds: $\operatorname{Pr}\left[\right.$ Any L_{l} not halved in phase]: $1 / \mathrm{poly}(n)$.

Why $\mathrm{O}(n)$ seems possible.

Phase i : expected steps until L_{l} halved:

- L_{l} has size $\log n / 2^{i}$.
- $\operatorname{Pr}\left[L_{l}\right.$ hit in one step $]=\frac{\log n}{8 n}$
- Expected steps: $O\left(\frac{n}{2^{i}}\right)$
- $\mathrm{O}(n)$ steps guarantees $\mathrm{O}(\log n)$ expected hits.
$-\operatorname{Pr}[$ not halving $]=1 / n^{c}$

Intuition for a bound of $\mathrm{O}(n)$.

- Idea:
- Phase i :
- $O\left(\frac{n i}{2^{i}}\right)$ steps to shrink L_{3}
- L_{3} larger, so more likely to be close to expectation
- $\operatorname{Pr}\left[L_{l}\right.$ hit in a step $]=\frac{2^{i} \log n}{n}$
- $O\left(\frac{n}{2^{i}}\right)$ steps sufficient to halve all $L_{l} \mathrm{~S}$ whp.

Extensions:

- Sufficient (whp) for any d-regular graph:

$$
O\left(n\left(1+\frac{\log n \log d}{d}\right)\right)
$$

- Sufficient whp for random d-regular graphs:

$$
O\left(n\left(1+\frac{\log n}{d}\right)\right)
$$

- All results hold if never cover chosen node.

Open problems for stochastic process

- Adding deletions
- Improving the constants
- $O(n)$ for all $\log n$-regular graphs?

