

Inoculating SSH Against Address-Harvesting Worms

Stuart E. Schechter Information Assurance Group MIT Lincoln Laboratory

Jaeyeon Jung MIT CSAIL

MIT Lincoln Laboratory

This work is sponsored by the Department of Defense under the Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

- Assume your network is immune to scanning worms
 - Your IP space is sparse
 - Scanning is almost certain to be detected before infection can spread
 - As for Jung, Paxson, Schechter, Staniford, Twycross, Weaver, and Williamson...

Why scan when infected host has info needed?

- Port 80 (HTTP)
 - Check web browser's file cache
 - Check addresses in cookie files
 - Perform random google searches
- Port 25 (Mail)
 - Search mail archives

Services exposed to outside attack anyway.

Critical data usually stored/audited elsewhere.

- Morris' "Internet Worm" found target hosts in
 - .rhosts
 - .forward
 - hosts.equiv
- Exploited buffer overflow (fingerd)
- Exploited format string vulnerability (sendmail)

• Could spread without software flaws

- Cracked passwords on local host (dictionary attack)
- Use cracked <user/password> pair to rsh to remote hosts

- The good news
 - Morris is out of the business
- The bad news
 - When scan-detection is deployed, worm writers will work harder
 - Dictionary attack worms coming back into vogue
 - » Lovgate, Deloader, Gaobot
 - » Attack online, without harvesting usernames/passwords
 - rsh has been replaced by SSH...

- For each user, the ssh client keeps a list that
 - contains the name of every host the user has logged into,
 - is kept chronological order of host discovery (most recent are most likely to still be active),
 - and is conveniently titled "known_hosts"
- Config files also may contain hostnames
- Server logs store user/clienthost pairs

Why scan when targets are on the menu?

- Instead of using a password...
 - Add public key to hosts you log into
 - Use secret key to authenticate
 - Passwords/agents protect secret key (please!)
- Worms love identity keys
 - One cracked ID key yields many new targets
 - Password-protecting keys is optional
 » If password, worm can still try dictionary attack
 - Keys can be scooped out of running agents
 - Root not needed if permissions set incorrectly

- Most worms/viruses attack user machines
 - Low/moderate impact
- SSH is used to access & administer...
 - Transaction processing systems
 - Databases & data stores
 - Security devices
 - Just about every other back-office UNIX system
- Often used to tunnel through firewalls
- SSH encryption prevents content inspection

- Prevent worms from harvesting addresses
- Worms can still scan
- We know how to detect scanning worms
 - Weaver, Staniford, Paxson [USENIX Sec 2004]
 - Jung, Schechter, Berger [RAID 2004]

- The known_host file is needed when
 - ssh must check if <key,hostname> pair matches known <key,hostname> pair in file
 - Add new <key,hostname> pairs if needed
- By comparison, /etc/passwd needed when
 - Host must check if <username,password> matches known <username,password> pair
- Do we store passwords in plaintext?

- Hostnames are DNS names or IP addresses
 - host-13.somedomain.com
 - 147.168.9.42
- Don't store hostname, instead...
 - Generate random salt
 - Store <salt,hash(salt,hostname)> as <s,h>
- Does hostname match known_hosts entry?
 - Read s,h from file entry
 - Check if h=hash(s,hostname)

- Vulnerable hosts should be
 - Able to write log entries
 - Unable to read log entries
- Use public key cryptography
 - First entry sets session key
 - Encrypt K_0 with public key, write to log
 - Encrypt log entry i with key $K_i = hash(K_{i-1})$
 - Calculate $\mathbf{k}_{i+1} = \mathbf{h}(\mathbf{k}_i)$ and discard \mathbf{k}_i
- Private key can decrypt K₀

For more advanced techniques, see Schneier and Kelsey (1999) and others

- We updated OpenSSH to
 - Hash known_hosts
 - Encrypt logs
- Our experience with OpenSSH code
 - Sparsely documented
 - Uses OpenSSL Crypto library
 - » APIs aren't fully documented (code is worse)
 - Caller must know correct buffer size when calling API (no max length to write parameter)
 - Hard to believe folks are looking at and auditing this code

Diversify to break worm's assumptions

- Add second password after login
- Use custom shells to limit access
 - Rename key commands
 - Change format of commands
 - » please rm -f thanks
- Look for commands that appear to be scripts
 Key stroke timing

- SSH failed to learn from past
 - Morris worm harvested addresses in 1988
 - Password files encrypted in 1970s
 - SSH released with plaintext known_hosts in 1995
- The threat is significant
 - SSH protects mission critical systems
- Fixes are painless
 - Easy to implement
 - Few users will know the difference

- Harvest tool
 - Searches disks for all domain names / IPs
 - Protocol guessing heuristics
 - Collects statistics (hashed for privacy)
 - Compares between hosts
- known_host measurement
 - Collect known_host files
 - Analyze topology
 - Model potential spread