
Structured peer-to-peer overlays:
A new platform for distributed

systems?
Peter Druschel

Rice University

Group members:
Anwis Das, Andreas Haeberlen, Sitaram Iyer, Alan Mislove, Animesh

Nandi, Tsuen Wan “Johnny” Ngan, Ansley Post, Atul Singh, Dan
Wallach

Collaborators:
Miguel Castro, Anne-Marie Kermarrec, Antony Rowstron

Microsoft Research, Cambridge
Y. Charlie Hu, Purdue University

IRIS: Infrastructure for Resilient
Internet Systems

NSF Large ITR project, http://iris.lcs.mit.edu
Institutions:

ICIR, MIT, NYU, Rice, UC Berkeley
PIs:

Hari Balakrishnan, Peter Druschel , Joe Hellerstein,
Frans Kaashoek, David Karger, Robert Karp, John
Kubiatowicz, Barbara Liskov, David Mazières, Robert
Morris, Scott Shenker, Ion Stoica

Additional funding from Texas TATP, Intel and Microsoft

Outline

• Background: Peer-to-peer (P2P)
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Sharing state: Distributed hash tables
• Coordination: Cooperative group communication
• Security and Incentives
• Conclusions

P2P: an exciting social development

• Internet users cooperating to share, for example,
music files
– Napster, Gnutella, Morpheus, KaZaA, etc.

• Lots of attention from the popular press
“The ultimate form of democracy on the Internet”
“The ultimate threat to copy-right protection on the

Internet”
• Technology has applications far beyond file

sharing
• Many vendors have launched P2P efforts

What is P2P technology?

• A distributed system architecture:
– No centralized control
– Self-organizing

• Participants share bandwidth, storage, computation
• Typically many nodes, but unreliable, heterogeneous and

potentially untrusted

Internet

Why p2p?

• Cooperative, shared infrastructure
• Aggregated storage, network and compute

resources
• Incremental (“organic”) growth and scaling
• Resource diversity (architecture, location,

ownership, rule of law): tolerate faults, attacks

But: realizing this potential presents many technical
challenges

Overlay networks

ISP3

ISP1 ISP2

Site 1

Site 4

Site 3Site 2 N

N N

N

N

N

P2P systems are self-organizing overlay networks
without central control

N

P2p overlays

Unstructured overlays (Gnutella,Freenet)
• Random overlay graph construction (cheap)
• Unreliable/inefficient searching

Structured overlays (CAN,Chord,Pastry,Tapestry)
• Overlay conforms to a specific graph structure
• Reliable, efficient searching
• Somewhat higher overlay construction/maintenance

overhead

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Sharing state: Distributed hash tables
• Coordination: Cooperative group communication
• Security and Incentives
• Conclusions

Structured p2p overlays

Overlay conforms to a specific graph structure
• Reliable, efficient searching

Overlay dynamically maps objects to live nodes, s.th.
• Each object is assigned a unique live node
• The number of objects per node is balanced

One primitive:
route(M, X): route message M to the live node
currently associated with object key X

Structured overlays support many
applications

Enhanced Internet services:
• Multicast/Anycast/Mobility [i3, Scribe]
• Overlay QoS
• Naming systems [INS, SFR, NLS]
Co-operative services:
• Shared storage [CFS, OceanStore, PAST, Ivy]
• Content distribution [Squirrel, SplitStream]
• Query and indexing [PIER]
• Messaging [POST]
• Backup store [HiveNet, Pastiche, PAST]
• Web archiver [Herodotus]

Research challenges

1. Scalable lookup
2. Balancing load
3. Handling failures
4. Network-awareness for performance
5. Robustness with untrusted participants
6. Programming abstraction
7. Heterogeneity
8. Coping with systems in flux
9. Anonymity/Anti-censorship

Goal: simple, provably-good algorithms

this
talk

Pastry: Identifier space

key

Consistent hashing
[Karger et al. ‘97]

160 bit circular id space

nodeIds (uniform random)

keys (uniform random)

Each key is mapped to the
live node with numerically
closest nodeId

nodeIds

O2160-1

Pastry: Routing

X

route(X,M)

Msg with key X
is routed to live
node with nodeId
closest to X

Problem:
complete routing
table not feasible

O2160-1

Overlay routing

Idea: Trade forwarding hops for routing table size

• CAN: N1/d hops, d neighbors
• Chord: ½ log2 N hops, O(log N) neighbors
• Pastry, Tapestry, Kademlia: logb N hops,

O(log N) neighbors (b is normally 16).
• Viceroy: O(log N) hops, k neighbors

Pastry: Prefix-based routing

Properties
• log16 N steps
• O(log N) state

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Pastry: Routing table (# 65a1fcx)
0
x

1
x

2
x

3
x

4
x

5
x

7
x

8
x

9
x

a
x

b
x

c
x

d
x

e
x

f
x

6
0
x

6
1
x

6
2
x

6
3
x

6
4
x

6
6
x

6
7
x

6
8
x

6
9
x

6
a
x

6
b
x

6
c
x

6
d
x

6
e
x

6
f
x

6
5
0
x

6
5
1
x

6
5
2
x

6
5
3
x

6
5
4
x

6
5
5
x

6
5
6
x

6
5
7
x

6
5
8
x

6
5
9
x

6
5
b
x

6
5
c
x

6
5
d
x

6
5
e
x

6
5
f
x

6
5
a
0
x

6
5
a
2
x

6
5
a
3
x

6
5
a
4
x

6
5
a
5
x

6
5
a
6
x

6
5
a
7
x

6
5
a
8
x

6
5
a
9
x

6
5
a
a
x

6
5
a
b
x

6
5
a
c
x

6
5
a
d
x

6
5
a
e
x

6
5
a
f
x

log16 N
rows

Row 0

Row 1

Row 2

Row 3

Pastry: Leaf sets

Each node maintains IP addresses of the
nodes with the L/2 numerically closest
larger and smaller nodeIds, respectively.
• routing efficiency/robustness
• fault detection (keep-alive)
• application-specific local coordination
(e.g., replication)

Pastry: Self-organization

Initializing and maintaining node state
(overlay construction and maintenance)

• Node addition
• Node departure (failure)

Pastry: Node addition

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

New node: d46a1c

Node departure (failure)

Leaf set members exchange keep-alive
messages

• Leaf set repair (eager): request set from
farthest live node in set

• Routing table repair (lazy): get table from
peers in the same row, then higher rows

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Sharing state: Distributed hash tables
• Coordination: Cooperative group communication
• Security and Incentives
• Conclusions

Optimize routing to reduce latency

• Nodes close in id space, but far away in Internet
• Goal: put nodes in routing table that result in

few hops and low latency

CA-T1
CCI
Aros
Utah

CMU

To vu.nl
Lulea.se

MIT
MA-Cable
Cisco

Cornell

NYU

OR-DSL N20

N80N89
N81

Pastry: Proximity routing

Assumptions:
• scalar proximity metric (e.g., RTT)
• a node can probe distance to any other node

Proximity invariant:
Each routing table entry refers to a node close to
the local node (in the network), among all nodes
with the appropriate nodeId prefix.

Pastry: Routes in proximity space

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

NodeId space

d467c4

65a1fc
d13da3

d4213f

d462ba

Proximity space

Pastry: Locality properties

1) Low-delay routes: Average delay penalty,
relative to IP, is low (1.3 - 2.2)

2) Route convergence: Routes of messages
sent by nearby nodes with same keys
converge at a node near the source nodes

d467c4

65a1fc
d13da3

d4213f

d462ba

Proximity space

Pastry: Node addition

New node: d46a1c

d46a1c

Route(d46a1c)

d462ba
d4213f

d13da3

65a1fc

d467c4
d471f1

NodeId space

Contact node is near joining node

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Sharing state: Distributed hash tables
• Coordination: Cooperative group communication
• Applications
• Conclusions

Distributed Hash Table (DHT)

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:
insert(k,v)
k=lookup(k)

Overlay
network
Overlay
network

• Structured overlay maps keys to nodes
• Decentralized and self-organizing
• Scalable, robust

DHT: insertion

key

Insert (key,value)

DHT: Replication

Storage Invariant:
Tuple replicas are
stored on k nodes
with nodeIds
closest to key

key

Insert(key,value,k)

k=4

DHT: Lookup

Key Object located in log16
N steps (expected)

usually locates replica
nearest client C

Lookup(key)

k replicasC

DHT: Dynamic caching

• Nodes cache tuples in the unused portion of their
allocated disk space

• Files cached on nodes along the route of lookup
and insert messages

Goals:
• maximize query xput for popular tuples
• balance query load
• improve client latency

DHT: Dynamic caching

Key

Lookup(key)

Proximity space

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Storing state: Distributed hash tables
• Coordination: Cooperative group communication
• Security and incentives
• Conclusions

Coordination: Cooperative group
communication

• Scribe: Tree-based group management
• Multicast, anycast, manycast primitives
• Scalable: large numbers of groups,

members, wide range of members/group,
dynamic membership

Cooperative group
communication

n2

n1

n0g:n1,n2

g:n3,n4

g

nodes

Operations:
create(g)
join(g)
leave(g)
multicast(g,m)
anycast(g,m)

• groupId g mapped to n0
• decentralized membership
• robust, scalable

n3g

n4g

Scribe

groupId

Join(groupId)

Multicast(groupId, msg)
Proximity space

Scribe multicast: Results

• Experimental setup
– Georgia Tech Transit-Stub model
– 100,000 nodes randomly selected out of .5M
– Zipf-like subscription distribution, 1500 topics

• Delay penalty: ~1.7 (relative to IP multicast)
• Link stress: Mean 2.4 versus .7 with IP

multicast

Scribe: Anycast

groupId

Join(groupId)

Anycast(groupId)

Proximity space

Scribe: Anycast
• Supports highly dynamic groups
• Suitable for decentralized resource discovery (can

add predicate during DFS)
• Results (100k nodes/.5M network):

– Join: 4.1 msgs (empty group); avg 3.5 msgs (2,500
members)

– 1,000 anycasts: 4.1 msg (empty group); avg 2.3 msgs
(2,500 members)

– Locality: For >90% of anycasts, <7% of members were
closer than the receiver

Key-based routing (KBR) API

[IPTPS’03]

• route(M, X): route message M to node with
nodeId numerically closest to X

• deliver(M): deliver message M to
application (upcall)

• forwarding(M, X): message M is being
forwarded towards key X (upcall)

Key-based routing (KBR) API

• getNeighborSet(): obtain the current sent of
neighbors in the id space.

• getReplicaSet(X): obtain a replicaSet suitable for
an object with key X

• range(r, N): obtain ranges of keys for which node
N is a r-root.

• local-lookup(X, num): obtain up to num possible
next-hop nodes appropriate for a message with
key X.

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Storing state: Distributed hash tables
• Notification: Cooperative group communication
• Security and Incentives
• Conclusions

Securing the overlay [OSDI’02]

Participating nodes can suffer byzantine faults
• Malicious participants
• Compromised nodes

Solution:
• Secure nodeId assignment
• Secure node join protocol
• Secure routing primitive
• Can tolerate up to 25% faulty nodes

Security model

Participating nodes can suffer byzantine faults
• fraction f, 0 <= f < 1, of participating nodes may

be faulty; fraction c, 1/N <= c <= f, may collude

Assumption:
• Applications authenticate data and services in the

overlay
• => attacks are limited to denial-of-service

Securing Data
• Self-authenticating data

– Content-hash data (key = SHA-1(contents))
– Public-key data (key=SHA-1(pub-key), content and

timestamp signed with priv-key)

• Application may encrypt content for privacy

• Pastry secure routing primitive ensures
– k replicas are stored on a random sample of nodes
– a non-faulty replica can be reached eventually

Attacks

Prevent messages from reaching replica roots
• drop, corrupt, mis-route messages
• bias routing tables to refer to faulty nodes

Cause objects to be placed on faulty nodes
• choose nodeId values
• otherwise impersonate replica roots

Sybil attack [Douceur 02]

• Attacker creates
multiple identities

• Attacker controls
enough nodes to foil
the redundancy

N32

N10

N5

N20

N110

N99

N80

N60

N40

Ø Need a way to control creation of node IDs

One solution: certified node IDs

• Certificate authority generates, signs node
Ids and public keys of nodes

• Nominal $ charge or real-world identity
checks discourage multiple ids

Secure routing primitive

sec-route(key, msg, r): ensures that msg is delivered
to each non-faulty node in the set of the r closest
replica roots for the key, with high probability.

Requires:
• secure nodeId assignment
• secure routine table maintenance
• secure forwarding

Enforcing fair sharing of resources

Two approaches:

• Use byzantine consensus protocol [Castro’99]
– Each resource use requires approval by a majority

among a set of “manager nodes”

• Economic approach [IPTPS’02]
– Provide incentives for nodes to act honestly

Economic approach

Idea: double-entry bookkeeping plus auditing
[IPTPS’03]

• Each node publishes credits (resources it
provides) and debits (resources it consumes)

• Incentive to keep “books” accurate:
• Imbalance exposed during audit
• Missing debit allows granting node to

withdraw the resource

PAST: Storage quotas

Balance storage supply and demand
• user holds smartcard issued by brokers

– hides user private key, usage quota
– debits quota upon issuing file certificate

• storage nodes hold smartcards
– advertise supply quota
– storage nodes subject to random audits within

leaf sets

Status

Functional prototypes
• Pastry [Middleware 2001]
• PAST [HotOS-VIII, SOSP’01]
• Scribe [NGC‘01, IEEE JSAC’02, NGC’03]
• SplitStream [SOSP’03]
• Squirrel [PODC’02]

http://freepastry.cs.rice.edu

Outline

• Background: Peer-to-peer overlays
• Structured p2p overlays: Pastry
• Pastry proximity-aware routing
• Storing state: Distributed hash tables
• Notification: Cooperative group communication
• Applications
• Conclusions

Applications

• Archival/backup storage: PAST [SOSP’01], Pastiche
[OSDI’02]

• Filesystems: Ivy [OSDI’02], OceanStore
[ASPLOS’00]

• Cooperative Web caching: Squirrel [PODC’02]
• Streaming content distribution: SplitStream

[submitted]
• Cooperative messaging/communication: Scribe

[JSAC’02], POST [submitted], i3 [Sigcomm’02]
• Distributed database: PIER [unpub]

Applications

Augmenting Internet infrastructure:
• group communication (multicast, anycast)
• overlay QoS

Co-operative services
• archival/backup storage
• cooperative Web caching/ flash crowds
• bulk content distribution
• messaging/communication

New applications?

Current Work
• Security
• Resource management, Incentives
• Keyword search capabilities
• Network filesystems
• Streaming content distribution
• Cooperative communication/messaging
• Databases
• Anonymity/Anti-censorship

Conclusion

• Structured p2p are a powerful platform for construction
of scalable, resilient, cooperative services

• Much more work to be done to realize the potential
• Looking for novel applications enabled by this

technology

For more information
• Pastry: http://freepastry.rice.edu
• IRIS: http://iris.lcs.mit.edu

Peer-to-peer systems

Music sharing: Napster, Gnutella, FreeNet, KaZaA

File storage: CFS [SOSP’01], FarSite [OSDI’02], Ivy [OSDI’02],
Oceanstore [ASPLOS’00], Pangea [OSDI’02], PAST
[SOSP’01], Pastiche [OSDI’02]

Event notification/multicast: Herald [HotOS’01], Bayeux
[NOSDAV’01], CAN-multicast [NGC’01], Scribe [JSAC’02]

Content distribution: SplitStream [submitted], Squirrel
[PODC’02]

Messaging: i3, POST

Anonymity/Anti-censorship: Crowds [CACM’99], Onion
routing [JSAC’98], Tangler [CCS’02], Dagster [submitted]

Historical web archiver
• Goal: make and archive a daily check

point of the Web
• Estimates:

– Web is about 57 Tbyte, compressed
HTML+img

– New data per day: 580 Gbyte
Ø 128 Tbyte per year with 5 replicas

• Design:
– 12,810 nodes: 100 Gbyte disk each and 61

Kbit/s per node

