The Business Case for Internet Pricing and Benefits to Network Security

Joseph Bailey S. Raghavan The Robert H. Smith School of Business University of Maryland

Internet Infrastructure Business Model

Business Model Problems

- Incomplete Contracts
 SLAs are inherently incomplete
 Transaction costs are high
 There is room for opportunism
 Externalities
 - □ Agreements between A and B affect C's value

Implications for Network Security

- Incentives for SLA enforcement is often weak
- SLAs may not prevent new security problems
- Externalities include network security risks

Traditional Economic Solutions May Cause More Harm than Good

Regulation

Concerns about centralized Internet governance

Vertical Integration

- Already a fairly concentrated market: Herfindahl-Hirshman Index (HHI) is approximately 2500
- Monopoly -> competition -> oligopoly/duopoly (Alan Pearce)

ISP Technology Adoption

For the ISDN model: F = 26.621, adjusted $r^2 = 0.008$, observations = 5,996 For the DSL model: F = 54.692, adjusted $r^2 = 0.018$, observations = 5,996

Internet Pricing Framework

Effective Bandwidth

$$P_{\text{expost}} = a * (C + \Delta B)$$

$$C = \frac{ab(1-r)R_p - B + \sqrt{(ab(1-r)R_p - B)^2 + 4Babr(1-r)R_p}}{2ab(1-r)}$$

- This is the tradeoff between bandwidth and buffer
- Provides incentive for appropriate buffer size selection

Price vs. Buffer Size

Top line: 43.9% utilization; Bottom line: 26.3% utilization

Future Business Models?

Internet 2

Public goods model

Cooperation among government, universities, and industry

Overprovisioning of capacity

Global Internet

Liberalization of Telecommunications Policy

The Importance of Internet 2

- Smaller universities find Internet 2 more important
- Universities that integrate telecom and data networking find Internet 2 more important
- $\begin{array}{l} \mbox{IMPORT} = \beta_0 + \beta_1 \mbox{PRIVATE} + \beta_2 \mbox{STUDENTS} + \\ \beta_3 \mbox{HOPS} + \beta_4 \mbox{FUNDING} + \beta_5 \mbox{URBAN} + \\ \beta_6 \mbox{TRAFFIC} + \beta_7 \mbox{INTEGRATE} \end{array} \end{array}$
- β₂ (-) and β₇ (+); p < 0.05; N = 49</p>

Global Traffic Flow

Global Internet Penetration

Hypothesis		Expect ed sign	Actual sign		
			Model 1	Model 2	Model 3
H1	H1.a / Telephone	+	[+]	[+]	[+]
	H1.b / Electricity	+	[+]	+	[+]
H2	H2.a / User income	+	+	[+]	[-]
	H2.b / Internet cost	_	_	+	[+]
H3	H3.a / Literacy	+	—	+	+
	H3.b / English	+	+	+	_
H4	Young age	+	[+]	[+]	[+]
H5	H5.a / Regulation	+	[+]	—	[+]
	H5.b / Government type	+	-	—	-

Conclusions

- Incomplete Contracts and Externalities are problematic
- Integration may solve some problems including security
- More regulation is unlikely
- Ex-Post pricing may solve some potential security problems in a market context