
Software Engineering Institute
and

Center for Computer and Communications Security
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Sponsored by the U.S. Department of Defense
© 2003 by Carnegie Mellon University

1

Carnegie Mellon University
Software Engineering Institute

Faith and Hope Revisited
Rethinking methodologies for building trusted systems

John McHugh

3 April 2003

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

2

Premise

While much of the software that we build is
"pretty good", we lack the link between process
and product that would permit us to predict
accurately the quality of the resulting product.
As a result:
• We cannot give prescriptive advice to

developers.
• We cannot provide meaningful warranties
• We cannot predict the safety or reliability of

systems that make extensive and critical use of
software

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

3

Is this really the case?

I believe that it is so.
I invite you, implore you, to convince me
otherwise.
Let us consider some cases that matter.

- Flight control systems
- Medical applications
- Weapons systems
- Commodity operating systems and

applications
The evidence is disheartening

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

4

Flight Control Systems

John Rushby of SRI has some wonderful case
studies from an experimental military aircraft.

There is a lingering suspicion that most of the
early A320 crashes have had software
involvement.

I have collected enough anecdotes from pilots
and flight crews to be leery of full authority
systems.
• Piedmont localizer
• UPS MD-11 fuel system
• ComAir RJ flaps

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

5

Medical Applications
The Therac-25 is probably the best known
example. It killed a number of people due to
software errors.

Devices are not the only risk. Compromising
patient care systems as DDoS zombies is recent.

We have seen instances of deliberate tampering
with medical records, putting patients at risk.

Physicians are far from perfect, but the trend
towards relying on automation as a cost control
mechanism will probably not improve the quality
of care.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

6

Weapons Systems

We have been lucky with the bombs but not so
with the decision making and control systems.

There are well documented software faults in the
Patriot. Aegis design flaws led to the destruction
of a civilian airliner with the loss of all on board.

Most large weapons systems today have a
substantial software component. Most of the
procurements attribute a large part of their cost
overruns and delivery slips to software problems.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

7

Commodity Software

• Commodity software (Windows, Linux, Word,
etc.) is not really intended to be trustworthy,
but does it have to be so bad?

• In addition to being accident prone, it is fairly
easy to break as we will see.

• Recently, Microsoft declared that making its
software secure was it’s highest corporate
priority. This is an encouraging sign, but we
will wait for results.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

8

Now, throw in a little malice!

One problem that doesn’t get addressed above is
the notion that someone might actively try to
break software, typically by using (abusing) it in
ways that were not anticipated by its designer /
implementer.

At the present time, we have a substantial number
of people who are looking for flaws in commodity
software. When they find them, they typically
develop attacks or exploits that take advantage of
the discovery.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

9

Evolution (attacks), Devolution
(attackers)

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

10

phf incident history – from Arbaugh’00

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

11

The evidence is disheartening

I first gave a version of this talk in 1994. It was an
outgrowth of observations that date back to 1988,
but were hardly original then. Let’s look back at
the motivating factors, then forward to today.

What happened in November of 1988 that that
caused me to start this line of thought?

• Some of you may remember – for others, this is ancient
history.

• At the very least, history is good for the soul.
• Don’t all speak at once.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

12

The “Morris Worm”

On 2 November, 1988, the internet was subjected
to it’s first widespread, self propagating attack.
This was attributed to a graduate student at
Cornell named Robert T. Morris, Jr.
• Whether it was malicious is still debated
• It’s propagation was the result of a mix of

- poor software engineering (2 cases) and
- misplaced trust (1 general case). Poor

security practice aggravated this case.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

13

Misplaced trust.

Unix systems have a notion of mutual trust.
• globally in /etc/hosts.equiv
• per user in .rhosts

It is possible to configure systems so that a user
on one machine need not give a password to
access a trusted peer.

By cracking weak passwords, the Morris worm
was able to reach (and often infect) many
machines using this mechanism, but, if it failed, ...

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

14

Software Engineering Failures

The worm became “aware” of other machines
because they were mentioned in various files on
the infected host. This allowed two other attacks
• A buffer overflow exploit against fingerd

A message was constructed that was too big for
the array the program used to hold it. This
caused code in the message to be executed.

• A misconfiguration exploit against sendmail
Commands sent to the attacked host were
executed there.

Both allowed the worm a foothold on another host.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

15

Avoidable? I claim so!

• The buffer overflow problem requires the
programmer to reason about data sizes when
they are known and to measure them when they
are not.

• The problem can also be solved by checking
data structure references for legality at run time
or by using “type safe” languages such as Java
rather than unsafe languages such as C

• In general, Defensive Programming covers this
area.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

16

Avoidable? I claim so!

The misconfiguration problem is more subtle. The
sendmail program was so complex that trial and
error was the rule. As Spafford noted

“Stories are often related about how system
administrators will attempt to write new device drivers or
otherwise modify the kernel of the OS, yet they will not
willingly attempt to modify sendmail or its configuration
files.”

The failure to design programs so that they can
be used easily, safely, and securly is a failure in
the “human factors” part of software engineering.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

17

Fast forward ... 14y, 5m later
One would think these problems would have been
fixed, but consider these CERT advisories

• CA-2003-09: Buffer Overflow in Core Microsoft
Windows DLL

• CA-2003-07 :Remote Buffer Overflow in Sendmail
• CA-2003-06 :Multiple vulnerabilities in

implementations of the Session Initiation Protocol
(SIP)

• CA-2003-05 :Multiple Vulnerabilities in Oracle
Servers

and others in the past few months.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

18

CA-2003-06 is like CA-2002-03

The associated vulnerability note, VU#854306,
indicates that part of the SNMP problem is due to
defects in message decoding. The messages are
specified in a notation called ASN.1 and decoded
using an ASN.1 library which suffers from buffer
overflow and other problems.
ASN.1 is used for many things. X-509 certificates,
SCADA systems, etc. The library is widely used.
Many things may be vulnerable. It is hard to tell
how many or to what extent. The problem has its
origins many years ago.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

19

Is This Necessary?

• We have seen similar phenomena in other
areas. The histories of Navel architecture,
bridge building, and steam engineering are
replete with similar examples.

• As we move into new areas of development, we
slowly learn that prior techniques are fraught
with pitfalls.

• In early endeavors, the field is full of charlatans.
These are brought under control, by societal
pressure, either through market pressures,
internal governance of the profession, or
government regulation.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

20

Some Nostrums

Lots of things have been suggested. Some may
or may not work. We don't know.

- Structured programming
- Formal Methods
- CMM and TDM
- Open vs. Closed source
- etc.

• Some we know don't work.
- N- Modular redundancy
- The “Contract Model” of programming
- etc.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

21

Is This Necessary?

• AS LONG AS WE DON'T KNOW WHAT WE ARE
DOING, A CERTAIN NUMBER OF ACCIDENTS
ARE INEVITABLE!

• Failures can be a driving force for research and
discovery.
- Shortly after we learned about centers of

mass, we stopped designing inherently
unstable ships.

- Failures in cast iron bridges and steam
boilers led to fundamental work in materials
science and structural engineering.

• The current situation in software engineering
has similarities and differences

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

22

Similarities

On the whole, we do pretty well.

• The average individual is not often affected by
software failures.

• Failures that affect lots of people are widely
publicized, sometimes.

• We are in a state of denial about the inevitability
of the problems, though we seldom attribute
them to a deity.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

23

Differences

• Software is much more malleable
• We have many more small failures and are

willing to tolerate them more often.
• We tend to anthropomorphize many failures

and avoid looking for the real causes.
• We have not yet reached the threshold at which

public pressure forces a change.
- We may never.

Commonalty is not recognized.
- We aren't ready by a long shot.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

24

Three Problems

• Collectively and individually, we fail to learn
from our past mistakes.

• We rush to impose standards without any
evidence that the standard will improve the
state of the practice.

• We don't understand what goes wrong.
- This applies equally to product, process, and

to the relationship between product and
product.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

25

History

Those who cannot remember the past are
condemned to repeat it. -- Santayana
• Other engineering disciplines have overcome

failures by collecting failure data and analyzing
failures for commonalty that could lead to
avoidance of that kind of failure in the future.

• Failure data in software is generally considered
proprietary.
- With few exceptions, failure data from

product developments is not available for
open research

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

26

Failure Data
• At an NRC workshop in 1993, Win Royce of

TRW urged the sharing of failure data. When
pressed, he admitted that he was not in a
position to offer TRW data.

• This is typical. Very little has appeared on
attempts to use detailed failure data for product
and process improvement. IBM had a program
for some product lines. There is apparently a
similar program in parts of HP.

• In regulated areas, the availability of product
and process failure data for public scrutiny
should be a matter of policy, possibly in trade
for reduced liability exposure.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

27

Standards

• There is a rush towards premature
standardization. MoD 0055 and 0056 are perhaps
examples, though they were intended as driving
forces.

• Standards such as MilStd 2167A, DO 178, etc.,
tend to be interpreted in a prescriptive fashion,
even though there is no evidence that the
prescribed activities are either effective or cost
effective in meeting the goals of the standard.

• Traditional standards are codifications of long
accepted practices. Software engineering
standards tend to be more arbitrary.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

28

Standards Agenda

• Standards that are not codifications of
practices that have proven effective should
have a validation component.

• This would require the collection of data that,
used as case studies, would validate or refute
the assumptions on which the standard was
based.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

29

Where do errors come from?

The process of building software is a human
activity.
• The first generation of computer programmers

came primarily from the physical sciences,
engineering, and math.

• This kind of background is usually ill suited to
careful consideration of the human factor.

• The social scientists who have come into
computer science have generally looked at how
people use computers, not how computers and
programs are developed.

We can only speculate about the latter.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

30

Speculation
1) Poor communications.

Customers and users don't speak the same
language.

2. Overwhelming complexity.
Programs offer complexity at many levels.
Details get lost and resurface.

3) Incompetence and over confidence.
Many programmers are amateurs and don't
understand what they are up against.

4) Individual differences
Why do different people write different
programs from the same specifications? Why
do they get it wrong differently but in the
same place?

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

31

What can we do?
It is tempting to say, "I've identified the problem,
the solution is up to you."
After all, you are going to be the folks in the
trenches who have to live with it. But that
wouldn't be right.

- It may be that there is little or nothing we can
do. What if the development process is
chaotic?

- If we are going to solve the problems, we
need information. This means systematically
collecting and sharing failure data.

- Given enough data, we may be able to figure
out what goes wrong and perhaps devise
ways to fix or prevent the problems.

© 2003 by Carnegie Mellon University

Carnegie Mellon University
Software Engineering Institute

32

Questions? Comments? Rants?
Thanks!

If you want to discuss these issues further, I’ll try
to read and answer email in a timely fashion.

John McHugh
jmchugh @ cert.org

Over the years, numerous colleagues, students,
and friends have contributed to the ideas
contained in this talk. I acknowledge their
contributions with heartfelt thanks.

