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ABSTRACT

Summarizing the contents of a video containing human activities is
an important problem in computer vision and has important appli-
cations in automated surveillance systems. Summarizing a video
requires one to identify and learn a ‘vocabulary’ of action-phrases
corresponding to specific events and actions occurring in the video.
We propose a generative model for dynamic scenes containing hu-
man activities as a composition of independent action-phrases - each
of which is derived from an underlying vocabulary. Given a long
video sequence, we propose a completely unsupervised approach to
learn the vocabulary. Once the vocabulary is learnt, a video segment
can be decomposed into a collection of phrases for summarization.
We then describe methods to learn the correlations between activ-
ities and sequentiality of events. We also propose a novel method
for building invariances to spatial transforms in the summarization
scheme.

Index Terms— Video Summarization, Activity Analysis

1. INTRODUCTION

Human activity analysis in videos has attracted significant attention
in recent years. The goal of a typical system is to recognize activ-
ities that are performed in the video from a known set of activities.
Most of the current approaches to solve this problem have focused
on building parametric or non-parametric models for a set of pre-
defined activities. However, in real world applications, one is not
provided with an exhaustive set of the events that may occur in a
given setting. Moreover, the system needs to be retrained for every
new deployment. These limitations have led researchers to look for
unsupervised methods for video indexing and mining. Unsupervised
approaches to mine events from videos are extremely challenging.
The system is not expected to have or be provided with any knowl-
edge of the domain or the type of activities that might occur in it.
The system is expected to discover ‘interesting’ patterns from the
observed scenes within these constraints.

Videos in surveillance settings typically contain multiple activi-
ties happening at various locations. Hence, the model should also be
able to account for the dependencies, if any, among the activities oc-
curring at different spatial locations. We show that an ‘independent
basis expansion’ is a very rich model for dynamic scenes and can be
used in several domains. We also show that the model also provides
a natural way of representing activities in a long video as verbs and
phrases, thus providing a dictionary of ‘action-phrases’.

Prior Work: Activity analysis techniques have primarily used
statistical pattern recognition techniques such as HMM’s by learning
models from a training set [1]. Most earlier unsupervised approaches
to video summarization dealt with problems such as shot boundary
detection and scene classification [2]. Such approaches are found

to work well in genres such as news-videos, but not for human ac-
tivities. Approaches such as [3], [4] attempt to model the problem
of learning activity patterns as one of clustering. Such approaches
extract dominant clusters from the videos and consider outlier seg-
ments as abnormal. A latent semantic model was used in [5] to rec-
ognize actions from long video sequence. A method to recognize
activities by modeling multiple activities as independent shapes was
presented in [6]. Most such approaches do not explicitly deal with
modeling simultaneous activities or inferring the correlations be-
tween them. When activities occur simultaneously, typical methods
involve tracking each moving object and recognizing the behavior of
each by matching with stored models or templates. If the moving ob-
jects interact with each other, the problem becomes even harder. In
our method, we model dynamic scenes containing human activities
as a composition of action-phrases from an underlying dictionary.
This allows a natural way of expressing simultaneous activities as a
conjunction of several action-phrases. It also allows correlations be-
tween activities to be easily identified using co-occurrence statistics
of the action-phrases. We propose a completely unsupervised tech-
nique to learn the dictionary using an independent basis expansion
for video segments.

Organization of the paper: Section 2 describes in detail the
model for dynamic scenes and the ‘independent basis expansion’.
Section 3 discusses the details of learning the action-phrases from
a long video. Section 4 presents the summarization algorithm for
videos. In Section 5 we present a method to achieve invariance to
spatial-transforms in the summarization scheme. Section 6 provides
experimental results.

2. MODELING EVENTS IN VIDEOS

Videos with human subjects usually contain several simultaneous
activities which may be correlated or independent of each other. In
a general setting, one or more of the following may hold true – a)
Activities occur simultaneously but are not correlated. e.g. A car
entering a parking lot and a person entering a building, b) Activities
occur simultaneously and are highly correlated. e.g. A plane arriv-
ing at a terminal and the corresponding ground-crew activity, or c)
Activities exhibit temporal dependencies. e.g. A plane arriving at a
terminal followed by passengers getting off the plane. Any model
for dynamic scenes should be able to account for each of these. We
model a dynamic scene as a composition of several action-phrases.
The compositional model not only allows for modeling independent
activities as different action-phrases, but also to decompose a com-
plex scene into its constituent activities. We assume that a video seg-
ment can be broken down into constituent action-phrases where each
action-phrase would correspond to a particular action being executed
by a human or group of humans independent of other activities oc-
curring in the video. Let the setP = {P1, P2, . . . PN} denote the set
of action-phrases in a given setting. A dynamic sceneD, containing



n ≤ N simultaneous activities from the above set can then be seen
as a union of the individual action-phrases i.e.D = p1∪p2∪. . .∪pn,
wherepi ∈ P and allpi are distinct.

Since, a given video segment is considered to be a composition
of several independent action-phrases we model a given segmentas a
linear combination of independent basis actions. SupposeI(x, y, t)
is a segment of video, the basis expansion is given by

I(x, y, t) =
∑

i

aiSi(x, y, t) (1)

where, eachSi corresponds to a particular type of activity. For
example, in a parking lot setting,S1 could correspond to ‘A car en-
tering the parking lot’ andS2 to ‘A man walking on the sidewalk’. A
video segment containing both these activities occurring simultane-
ously can then be interpreted as a linear combination of these basis
activities. Several such representations are possible, but we are in-
terested in a representation that captures not just the motion patterns
of individually occurring activities but also their mutual dependence
or independence. In the absence of higher level domain knowledge,
we use statistical independence as the criterion to discover the in-
dependently occurring activities. This constraint also facilitates the
learning of the model parameters in equation 1.

2.1. Feature Selection

Direct modeling of an entire video segment as a linear combination
of independent bases leads to computational challenges. Firstly, the
dimensionality of the data would be extremely high. Secondly, using
pixel intensities directly is sensitive to noise and illumination varia-
tions. Hence, we extract a feature called themotion trace. Given a
M × N × T space-time volumeI(x, y, t), first the moving objects
in the scene are extracted by background subtraction. Now, we have
a binary space-time volumeIb(x, y, t). The motion trace is recur-
sively defined as

M
(t)(x, y) = max(ρ ∗ M

(t−1)(x, y), Ib(x, y, t)) (2)

whereρ represents aforgetting factor. The role ofρ is to provide
a trace of the actor’s motion. We typically chooseρ between 0.95
and 0.99. A similar feature, called motion history was used in [7] to
perform activity recognition.

In figure 1, we show some examples of the motion traces gener-
ated by a person walking on the road and the sidewalk. We see that
the feature captures both the spatial location and the motion charac-
teristics of the actor.

Fig. 1. Top Row: Three frames from video showing a person walk-
ing on the road, a person walking on the sidewalk and two persons
walking on the sidewalk and the road. Bottom Row: Corresponding
Motion Traces

3. LEARNING THE ACTION PHRASES

According to the model in equation 1, each segment is viewed as a
mixture of a few underlying independent activities. Given a collec-
tion of features (the motion-trace in our case), our goal is to separate
the underlying independent bases that generated them i.e. the action
phrases. Similar problems have been tackled in the speech and sig-
nal processing literature where the problem is commonly termed as
Independent Component Analysis (ICA) or Blind Source Separation
(BSS). We make use of standard techniques from the ICA literature.
To state the problem in general terms, suppose thatn linear mixtures
x1, ..., xn of n independent components are observed –

xj = aj1s1 + aj2s2 + ... + ajnsn, for all j. (3)

Without loss of generality, it can be assumed that both the mix-
ture variables and the independent components have zero mean.
Equation 3 can be written in matrix-vector form as

x = As (4)

wherex is a column vector whose elements arex1, ..., xn. The
matrix A is called the mixing matrix. ICA involves estimating the
mixing matrix A, its corresponding de-mixing matrixW, and the
source componentss under the assumption that the sources are sta-
tistically independent. We have used the algorithm presented in [8]
in our implementations. The learning stage is summarized as fol-
lows.

Algorithm 1 Algorithm for Learning the Action Phrases

1: Divide the long videoIlong(x, y, t) into overlapping segments
{I1, I2, ..} each of lengthL.

2: For each segmentIi, compute its motion traceMi.
3: Convert the motion traces into vectors by row ordering.
4: Compute the sources{si} and the mixing matrixA using ICA

[8].

Note: There exist several methods to estimate the optimal size
of the vocabulary i.e. the number of componentsn. We refer the
reader to [9] for more details. Here, we used the AIC criterion to
estimate the number of independent components.

4. SUMMARIZING A VIDEO SEGMENT

Each of the learnt independent basis constitutes an action-phrase.
The co-ordinates (mixing-ratio) of each vector in the basis provide a
description for each segment. These mixing-ratios are also estimated
as part of the learning procedure. The co-ordinates in general can be
both positive and negative. Since the contribution of a component
is indicated by the absolute value of the corresponding co-ordinate,
a signature for each segment is created using the absolute values of
the co-ordinates and normalizing them by the largest magnitude. A
signature for each segment is created by normalizing the vector of
mixing-ratios corresponding to that segment.

Now, each segment can be viewed as a document and the basis as
a set of phrases. This representation of video segments is similar to
the vector-space model (VSM) popularly used in document retrieval
literature [10]. The similarity between signaturesv1 andv2 can be
defined as



Scorr(v1, v2) = v
T
1 v2, Sangle(v1, v2) = cos(6 (v1, v2)) (5)

Due to the normalization terms, the cosine similarity measure is
more robust to variations in the document size. In our experiments,
we use the correlation similarity measure. The results are not signif-
icantly different with the cosine measure.

5. INVARIANCE TO SPATIAL TRANSFORMS

In many applications it is desirable to achieve invariance to spatial
transforms while learning the action-phrases. First, we prove a re-
sult that relates low-level feature transforms to transformations of
independent components.

Lemma: Let {X(p)} be a zero-mean random field where
p ∈ D1 ⊆ R2. Let {φX

n } be a set of statistically independent basis
of X. Let T : D2 −→ D1, whereD2 ⊆ R2 be a continuous,
one-to-one mapping. Let{G(q)}, q ∈ D2 be a random field derived
from X asG(q) = X(T (q)). Then, the setφG

n (q) = φX
n (T (q))

forms a statistically independent basis forG.

Proof: Suppose{φX
n } is a set of statistically independent basis

of X. i.e.

X(p) =
∑

i

ciφ
X
i (p) (6)

p(φX
i (p), φX

j (p)) = p(φX
i (p))p(φX

j (p)), i 6= j (7)

Now, supposeG(q) = X(T (q)), p = T (q). Then,

G(q) = X(T (q)) =
∑

i

ciφ
X
i (T (q)) =

∑

i

ciφ
G
i (q) (8)

p(φG
i (q), φG

j (q)) = p(φX
i (T (q)), φX

j (T (q))) (9)

= p(φX
i (T (q)))p(φX

j (T (q))) = p(φG
i (q))p(φG

j (q)), i 6= j (10)

Thus,φG
n (q) = {φX

n (T (q)} form a statistically independent ba-
sis forG.

Application to invariances: Using this result, we can attach a
notion of quasi view-invariant similarity between different action-
phrases. LetT denote the group of transforms under consideration
e.g. affine, homography etc. LetV1 and V2 denote two action-
phrases (basis vectors). Motivated by the above result, the similarity
between two vectors can be expressed as

Ssemantic(V1, V2) = max
T

|cos6 V1, T (V2)| (11)

whereT (V2) is the transformed version ofV2.
Since, we are interested in learning action-phrases from a single

video stream the affine group is sufficient to account for most varia-
tions in spatial locations of activities. To perform the optimization,
we use Nelder-Mead’s simplex method. It is a direct search method
and is used when computing gradients is difficult. A good initializa-
tion for the optimization problem can be obtained from featureless
image registration techniques.

From the learnt set ofN action-phrases, we compute the seman-
tic similarity between them as above and arrange them in anN ×N
similarity matrixS. We can now define the similarity between indi-
vidual segments as

Sim(v1, v2) = v
T
1 Sv2 (12)

wherev1, v2 are signatures corresponding to two segments.

6. EXPERIMENTS

In this section, we present the results of experiments based on the
proposed approach. The setting of the first experiment consists of a
subject executing a series of hand gestures in a near-field setting at
varying rates. The subject used four basic hand gestures –{Raise left
hand, Raise right hand, Wave left hand, Wave right hand} referred to
as{A, B, C, D} henceforth, and actions done simultaneously such
as raise both hands etc. giving rise to eight different activities. The
video was collected at about10 frames per second at a resolution of
720 × 480.

The set of basis vectors obtained from the proposed algorithm
is shown in figure 4. To visualize the learnt activity structures, each
segment was embedded into a2−D space using PCA over the learnt
mixing weights. Figure 3 shows the resulting embedding. It can be
seen that each of the four basic activities is clustered separately. Seg-
ments containing simultaneous activities are placed approximately
equidistant from the two clusters from which they were formed. This
indicates that the model is able to represent simultaneous activities
as a combination of the basic ones.

Fig. 3. Clusters of activities

Fig. 4. Learnt basis: Action phrases

Summarization: In figure 5, we show the full summarization of
a long video sequence in which the actor performs the above eight
activities at random. Each of the four learnt action-phrases is rep-
resented with a different color. Occurrence of an action-phrase in a
segment is represented by the presence of the corresponding color.
Matching of colors indicates that the extracted summary matches
well with the ground-truth obtained using manual labeling.

Correlations: We build co-occurrence statistics between the
action-phrases from the extracted summary. From the co-occurrence
relations, we can identify action-phrases that co-occur and are po-
tentially part of a more complex activity. It was observed that the
pairs A-B, A-D, B-C and C-D showed high correlation and hence
are potentially parts of a more complex activity. In fact, these pairs



Fig. 2. Detected Unusual Activities. Left: Two persons walking around a vehicle. Right: Person criss-crossing

Fig. 5. Results of summarizing a long video sequence. Matching of
colors indicates that the right action-phrases have been associated to
each video segment. (Figure best viewed in color)

correspond to - Raise both hands, Raise left and wave right, Raise
Right and wave left and Wave both hands respectively.

Video Retrieval: In this experiment, we used the TSA dataset
which consists of airport surveillance videos. Typical activities that
occur are movement of ground crew, vehicles such as fuel cart, lug-
gage cart etc, arrival and departure of planes and passengers getting
on and off planes. In the experiment, we selected a query video seg-
ment containing a few people getting on a plane and a luggage cart
moving toward a distant plane as shown in figure. The best match-
ing segment that was found is shown in figure 6, which also contains
people getting on a plane.

Fig. 6. Left: Query segment – Passengers getting on plane and fuel
cart moving at a distance, Right: Retrieved Segment – Passengers
getting on the plane.

Spatial Invariance: To illustrate the effectiveness of the invari-
ance result we performed a recognition experiment. The setting is
the same as described in the first experiment. We generated syn-
thetic data of a change of view by translating and scaling the features
and created a long video sequence by concatenating the segments
thus obtained. Action-phrases were learnt and the semantic similar-
ity between them was computed. Then, we matched sequences of
one view to stored exemplars from the other view. As expected, not
compensating for spatial transforms yielded poor results with aver-
age recognition accuracy of10%. After compensating for spatial
transforms we obtained an average recognition accuracy of93.75%
which indicates that the proposed spatial invariance method is effec-
tive.

Unusual Activity Detection: In the next experiment, we used a
10 minute video sequence of the entrance of a building. The typical

activities that were observed were people walking on the side-walk,
people walking on the road, and cars entering and leaving the park-
ing lot. Since, the independent basis provides a generative model, we
computed the reconstruction errors for each segment. A reconstruc-
tion error above a threshold provides an indication of abnormality.
For this dataset, the discovered unusual activities are shown in fig-
ure 2.

7. CONCLUSIONS

In this paper, we proposed a vocabulary model for dynamic scenes
and presented algorithms for unsupervised learning of the vocabu-
lary from long video sequences. We showed the effectiveness of the
approach using both far-field and near-field surveillance videos. The
results are promising and show that our technique can be used for
unsupervised activity indexing as an initial filter for further process-
ing.
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