Algorithmic and Architectural Design Methodology for Particle Filtersin Hardware

Aswin C Sankaranarayanan, Rama Chellappa* and Ankur Srivastava
Electrical and Computer Engineering Department, University of Maryland at College Park

{aswch, rama}@f ar . und. edu,

Abstract

In this paper we present algorithmic and architectural methodology for
building Particle Filters in hardware. Particle filtering is a new paradigm for fil-
tering in presence of non-Gaussian non-linear state evolution and observation
models. This technique has found wide-spread application in tracking, navi-
gation, detection problems especially in a sensing environment. So far most
particle filtering implementations are not lucrative for real time problems due
to excessive computational complexity involved. In this paper, we re-derive the
particle filtering theory to make it more amenable to simplified VLSI implemen-
tations. Furthermore, we present and analyze pipelined architectural methodol-
ogy for designing these computational blocks. Finally, we present an application
using the Bearing Only Tracking Problem and evaluate the proposed architec-
ture and algorithmic methodology.

1 Introduction
1.1 Problem of Particle Filtering

Filtering is the problem of estimation of an unknown quantity, usually re-
ferred to as state, from a set of observations corrupted by noise. Filtering (ex-
ample, Kalman filtering) has been applied to a broad spectrum of real-life prob-
lems including GPS navigation, tracking etc. One such application is video
based tracking of the location, velocity, identity (objectified as states) of a tar-
get when it is observed using a camera. We need to estimate these states (in
some optimal sense) from each frame of the video. In this application, the states
evolve through the motion of the target. Capturing this state information enables
us to predict the location (state) of the target in future. Such prediction problems
depend strongly on the concept of filtering.

The specific nature of the estimation/filtering depends greatly on the state we
need to estimate, the evolution of the state with time (if any) and the relation of
this state to the observations and the sources of noise. The model that captures
the evolution of states is called the motion model or the State Transition Model.
The observation model captures the relationship between an observation and a
state. Conceptually, filtering makes a prediction and refines/validates it with an
observation over a long period of time. This prediction and refinement has to
performed in optimal sense (formally defined later).

Generally, analytical solutions for estimation is only possible in constrained
scenarios. Kalman filtering (a purely analytical filter) [8] is an optimal filter
when the state transition and the observation models are linear and the corrupt-
ing observation noise are Gaussian in nature. However, in a practical scenarios,
the state transition and the observation models are usually nonlinear and the
corrupting noise non-Gaussian, analytical solutions are no longer possible.

In order to address this nonlinear nature of practical problems, a new concept
in filtering has gained attention [5, 2]. Popularly known as particle filtering,
it uses Monte Carlo simulation as a core estimation framework. Monte Carlo
Simulations are a popular tool for estimating analytically intractable quantities.
Conceptually particle filtering performs the following operation.

*Partially supported through the Advanced Sensors Consortium sponsored
by the U.S Army Research Laboratory under the Collaborative Technology Al-
liance Program, Cooperative Agreement DAAD19-01-02-0008.

ankur s@l ue. und. edu

Given the prior knowledge of the sequence of states that the system had been
into zo, z1, x2...z¢, a sequence of observations y ...y; of the system, the pos-
terior probability is defined as p(z¢|yo, y1, - - -, y¢). This posterior probability
contains a lot of information about the system under observation and needs to
be estimated. Particle filtering approximates this density function with a discrete
set of samples called particles and the weights associated with these samples.
This approximation is performing using Monte Carlo Sampling.

Because particle filtering uses Monte Carlo Sampling as basic approxima-
tion step of the posterior probability, it can easily capture the nonlinearities in
the system under observation. Details about the mathematical framework would
be presented in the later sections.

1.2 Particle Filtering in Hardware: A New Applica-
tion Domain

Particle filtering has been applied to several real life problems of tracking,
navigation, detection [7, 3, 10] especially in a sensing framework. There have
been numerous software implementations of the particle filtering scheme tai-
lored to various applications. Because particle filtering is a Monte Carlo Sim-
ulation based estimation framework, the computations tend to be very slow.
Therefore, in this paper, we present hardware architectures for particle filters
for speeding up the basic computations, thereby making particle filtering based
solutions amenable to real time constraints. Particle filtering is more of an appli-
cation domain rather than an application. Underlying computations in particle
filtering vary from one application to the other. Therefore this paper proposes
generic algorithmic and architectural strategies for particle filtering in hardware.
The proposed techniques could be either used in an automated particle filtering
synthesis tool or used by individual designers while developing their own appli-
cation specific particle filtering implementations.

1.3 Specific Contributions

Specifically, this paper introduces particle filtering as a new problem for
hardware synthesis. It investigates the traditional SISR based particle filtering.
SISR requires latency and resource hungry resampling step. Therefore in-order
to improve the hardware complexity of particle filtering we make the following
contributions

1. Algorithmic Enhancements: In order to avoid the resampling step, we re-
derive the theory of particle filtering using Markov Chain Monte Carlo
technique. Our re-derived particle filtering technique is simpler in hard-
ware complexity

2. Hardware Architecture: We propose two hardware architectures (sequen-
tial and parallel) for the algorithm we propose and analyze its latency and
resource requirements.

Finally, in experimental results we take the Bearings Only Tracking Prob-
lem to demonstrate an application. We compare the traditional and re-derived
algorithms and also analyze the hardware complexity for the associated particle
filtering technique.

The rest of the paper is organized as follows. We first present the traditional
particle filtering algorithm. This is followed by a brief analysis of the draw-
backs of this algorithms as hardware architectures. In section 4, present the the-
ory behind an alternate Monte Carlo Sampling technique called the Metropolis

Hastings algorithm and its relation to particle filtering. Section 5 analyses the
proposed hardware architecture determining time estimates. In Section 6, we
present an application of the proposed architecture to the problem of bearings-
only tracking.

2 ParticleFiltering Theory

In this section we will briefly outline the computations that need to be per-
formed in the particle filtering scenario. Let =+ denote the state of the system in
time ¢ that we are trying to infer. This is modeled as a Markov process of ini-
tial probability distribution p(zo). We also have a sequence of of observations
from time O to t denoted by {y:;¢ € N} which would assist us in making this
inference. The theory assumes that the following information about the system
under observation is known a-priori. This information is specific to the applica-
tion and therefore particle filtering is not a specific algorithm but belongs to a
class/domain of algorithms.

1. p(x¢|xe—1): State transition probability for the system. This describes
the way a system state at time ¢ — 1 goes to time ¢

2. p(y¢|z¢): Observation model, the probability that we obtain a certain
observation given a certain state of the system

3. p(zo): The probability of the initial state of the system, ie. at t=0

In order to infer the current state of the system at time ¢ based on the obser-
vations made so far, we need to evaluate the posterior probability of the system
given as p(x¢|y1:+). This posterior probability would be used to draw an infer-
ence about the system, which is mathematically represented as

I(ft) = Epayjyr.o) [t (x1)] (€]

where f¢(-) is some function of interest. Examples of such an inference could
be the conditional mean, where f¢(z+) = x+. The posterior probability is esti-
mated using a recursive technique based on the well known Bayes Theorem

p(elynee) = p(yt|we)p(wt|y1:e—1) @
p(ytly1:e—1)
In order to compute the posterior probability, we will need to compute the
quantity p(x¢|y1.t—1). Computation of this quantity is called the prediction
step and is mathematically represented as follows

p(@ilyii_r) = / p(@tlze—1)p(@t—1ly1:t—1)dwt—1 ®)

Moreover equation 2 also requires us to know p(y:|z¢) (defined by the
observation model) and p(y:|y1:t—1). Note that, in reality there are no un-
knowns in equation 2 since all parameters are either specified or computable
(like equation 3). The problem is that this computation may not have an analyt-
ical representation. Therefore particle filtering approximates the desired poste-
rior p(z¢|y1.¢) with a set of particles or samples S; = {z"), w(" N |, with
associated weights. Conceptually, these particles could be understood as sam-
ples from the posterior density with the weights as unbiasing terms to account
for sampling. This computation is performed recursively, starting from time
t = 0. This algorithm is popularly known as SISR.

e Initialization: At time ¢ = 0, using Markov Chain Monte Carlo
(MCMC) technigues, sample {xél)},i =1,..., N from the initial den-
sity function p(zo).

e Particle Proposition Based on the observation y. and the state of the sys-
tem at time ¢ — 1 (represented by particles {z}_,,w}_,},i=1,..., N,
propose a set of new particles {zti)J = 1,..., N} from the proposal
function or the importance density function g(z¢ \mgl_)lyt).

e Importance Weights: With each proposed particle :cEi), associate an

unnormalized weight u”;ii) defined as:

@ Pl =)
Wy " =Wy g

— @
9(5'31(&)|$§—>1?/t)

o Normalize ﬁ;gi) to get wii)
()
(9) Wy
W=) ®)
PO

e Compute the Expected Inference: The proposed particles z% and the
associated weights wy are properly weighted with respect to the desired
posterior. Therefore

N . .
Bylf(@0)] = Bylf(ww(a)] = lim >~ f(a")uw” @)
i=1

e Resampling: Resampling is a necessary step that replicates particles with
higher probability and reduces the number of particles with lower proba-
bility. By doing this, we rejuvenate the particle set to obtain better results
for future time instants. The resulting particle set is then used in the next
time step to predict the posterior probability subsequently. Resampling in-

volves sampling a new set of particles from the set {a:t”, i1=1,...,N}

according to the weights {wti),i =1,...,N}. The new set of particles
are assigned identical weights (=%). Without resampling the particle set
would have a very large variance thereby reducing the quality of the esti-
mate.

e Goto the next iteration

Figure 1 illustrates the based block diagram of this particle filtering scheme.

3 Hardware Complexity of SISR

In order to speed up the particle filtering technique, it has become imper-
ative to perform it in hardware. Effective algorithmic and architectural ap-
proaches are therefore desired. The particle filtering technique, as presented
in the previous section (and illustrated in figure 1), essentially comprises of a
hardware block which is executed iteratively from one observation interval to
another y;_1 to y¢. During this interval the particles from the previous time
step are processed as discussed earlier to generate particles for the current time
step. The SISR algorithm presented above has several application specific basic
blocks including the proposal block, importance weights computer, normalizer,
re-sampler and inference block. Although this implementation assists in speed-
ing up the particle filtering scheme there are several disadvantages, as outlined
below.

1. Complexity in Resampling: The resampling block is a complicated hard-
ware implementation and can therefore impact the speed and resource
utilization. Moreover it is not amenable to pipelining (since we cannot
start resampling until all the samples are ready).

2. Flexibility: Having hardware implementations implies loosing out on
flexibility. But there are certain aspects of flexibility that must not be
lost from a particle filtering perspective. It has been discussed that we
start with N particles from the previous iterations, propose, evaluate and
resample exactly N particles. Typically, hardware implementations would
end up fixing N to a constant. This can adversely affect the quality of
particle filtering. Typically, we would be interested in proposing @ > N
particles and finally deriving the inference from @ particles. We would
also like @ to be a variable chosen depending on the need and situation.
For example in visual tracking applications, in the event of an occlusion
we would like to propose more than N particles. Note that in such sce-
narios we would still use only N samples to represent the posterior. The
degree of flexibility offered by SISR based implementations is very low.

In order to address these problems, we re-derive the particle filtering scheme
using an alternative approach in which re-sampling is not needed and flexibility
(as described above) can still be obtained.

4 MCMC based Particle Fildtering

The particle filtering (PF) technique which helps in evaluating the posterior
probability (equation 2) and the state expected inference (equation 1) is essen-
tially a sequential Monte Carlo technique. In a way, these are special cases

Sio1 {a}

Importance

(0"}

Proposal

Weights

Q(It|$t—1yt)

P(xe]|Te—1y1)
Wy X W1 g(ﬂ?f,\mt—lyt)

Eplf(z4)]
Inference ——
i) S, = (0 1
Normalization {wt } Resampling ¢ {xt N}

Figure 1. Figure shows commonly used SIS-R algorithm with resampling done at the end of every estimation

cycle.

of more general Monte Carlo Markov Chain (MCMC) based density sampling
technique. The Metropolis Hastings Algorithm (MHA) [1, 6] is considered the
most general MCMC based sampling. Most popular MCMC samplers such as
the Metropolis Sampler [9] or the Gibbs Sampler [4] are special cases of this
algorithm.

The MHA and the PF both address the issue of generating samples from
a distribution whose functional form is known (upto a normalizing factor) and
which is difficult to sample. In this section, we present a hybrid sampler that
uses the sampling methodologies adopted in MCMC samplers (specifically, the
MHA algorithm) for the problem of estimating posterior density functions. We
later show that such a scheme removes the adverse effects of the resampling
block in the traditional PF architecture. Itis also shown that such an architecture
has more desirable properties in its scalability and flexibility.

In this section, we present the Metroplis-Hastings Algorithm and its deriva-
tive, the so called Independent Metropolis-HAstings Chain and show its appli-
cability for particle filtering. For brevity, these derivations are provided briefly.

4.1 Metropolis Hastings Algorithm (MHA)

We first present the general theory of MCMC sampling using the MHA Al-
gorithm and then state the conditions under which the general theory fits into the
particle filtering algorithm presented before. It could be recalled that the parti-
cle filtering scheme needs to generate samples of the form %, w} where these
samples represent the posterior density. Similarly, MHA generates these sam-
ples from the desired posterior (say p(x)) by generating samples from an easy
to sample distribution say ¢(z|y). MHA produces a sequence of state {x(™)},
which by construction is Markovian in nature, through the following iterations.

1. Initialize the chain with an arbitrary value z(©) = z.

2. Given (™), generate & «~ g(-|(™)), where g is the sampling or proposal

function.
3. Accept & with probability a(z("), 2), that is, for a uniform random vari-
able u «~ 1[0, 1]
(n+1) T if u < oz,)
X = .
z(™ otherwise

alz(™, 2) min{ p() g(™]2) 1}

p(z(™) g(@z(m)’

Theorem: Under mild regularity conditions, the Markov Chain {z(™)} as
constructed by the MHA converges and has p(z) as its invariant distribution,
independent of the value x¢ chosen to initialize the chain.

The MH algorithm is used to simulate a Markov Chain whose invariant dis-
tribution is the desired distribution p(x). However, there is an initial phase when
the chain is said to in a transient state, due to the effects of the initial value x¢
chosen. However, after sufficient samples the effect of the starting value dimin-
ished and can be ignored. The time during which the chain is in a transient state
is referred to as burn-in period. This is usually dependent on both the desired
function p(x), the proposal function g(z) and most importantly, on the initial
state zp. In most cases, an estimation of this burn in period is very difficult. It
is usually easier to make a conservative guess of what it could be. There are
also heuristics that estimate the number of burn in samples (say N;). We shall
assume that such an estimate of N, is available.

4.2 Independant MH Sampling and Particle Filter

Independent MH Sampling is a special case of the general MH algorithm
where the proposal function g(x|y) = ¢(z). This would mean that the accep-
tance probability, «(z1, z2) becomes,

M

aer, 2) = min{p(m) g9(z1) 1}

g(z2) p(z1)’

There is a close resemblance between the IMHA and the SISR algorithm
presented in the previous section. Note that the ratio p(x)/g(x) that appears
in the accpetance probability is analogous to unnormalized importance weight
defined in equation (4) when the desired density p(x) equals the posterior den-
sity (of the Bayesian Inference problem) p(z+|y1.+) and the importance function
g(z) is the importance function suitably defined.

To begin with, we present an alternative interpretation of particle filtering
and modify the underlying theory to bring it in line with the Independent MHA.
Particle filtering generates independent (conditionally-independent, because of
resampling) tracks in the state space and weighs these tracks to account for both
for the posterior density and the importance function. Resampling, destroys the
independence of the tracks by deleting tracks with lower weights and replicating
tracks with higher weights. The concept of tracks (independent or otherwise)
poses a problem in application of MHA to estimate the posterior, because the
concept of importance function becomes ambiguous. This is due to the fact
that, in a general scenario, each track has an importance function defined with
respect to the evolution of the track till the current time instant. Mathematically,

the ith track at time ¢ uses an importance function, given as g(z¢ |xt_1yt) This

importance function, in nature, is local to the it track. In contrast, the MHA
algorithm requires the importance function to depend functionally only on the
last accepted sample in the chain, and in the case of the independent MH Chain
the importance function is maintained constant.

To remove the concept of tracks we invoke the plug-in principle on the
posterior density function at time ¢ — 1. Given a set of unweighted samples
{xt 1,%=1,...} sampled from the posterior density p(z;_1|y1:¢—1) attime
t — 1, we can approximate the posterior by

p(xt 1\y1 t— 1

Z b1 (actl)1) ®)
where 5, , (+) is the Dirac Delta functlon on z+_1. Using equations(2,3,8) ,
we can approximate the posterior at time ¢,

N

Z (@elz{?)) ©

p(yt|zt)

p(Telyre) & —————
p(yelyr.e—1) N

The posterior density function p(x+|y1:¢), as defined, needs to be sampled
(just like particle filtering). This sampling can be performed using MHA. The
issue of choice of importance function now arises. The choice of importance
function is made when the system is being designed. To generate samples that
are similar to those generated by the SISR algorithm we propose an importance
function, that is a mixture of the ones used in the SISR algorithm

N

> woledeiow (10)

1=1

g (wely:) =

Though functionally, the new importance function is different from the one
is used in the SISR algorithm, the particles proposed will be identical. This
is due to the fact that to sample from g’ (-|y:), we need to first sample I
U[1,2,...,NJ,and then sample from g(-|zl_,yz).

The acceptance probability now takes the form

a(ze, &) = min{ w'(%) 1} (11

w (z¢)’

Zzl'vzl p(zt ‘xgl—)ﬂ
S gl ye)
We can now avoid the resampling step defined in traditional PF algorithms.
The intuition behind such a algorithm is that we will use an independent MH

sampler to generate unweighted particle set/stream from the desired posterior.
The main details of the algorithm is presented below.

w' (1) = p(ye|2t) (12)

1. Given unweighted particle set, S;_1 sampled from the posterior at time
t — 1, we need to obtain a particle set sampled from the posterior at time
t.

2. Generate N + N indices I;,7 = 1,..., N + Ny uniformly from the set
{1,2,3,..., N}, where Ny is an estimate of the burn in period and N is
the number of particles required. This essentially implies that we generate
N + Ny random number between 1..N with uniform density.

3. From the particle set S;_1 = {:cgi)l,i =1,...,N}attime ¢t — 1,
propose N + N, particles S = {50971‘ =1,...,N + Ny} using the
rule:

a" o gClagt)
This essentially implies that we randomly select one of the z,_1 particles

(denoted by a:fil). Using this, the proposal function g and the observa-
tion y; we propose the new particle x;.

4. For each particle in Sy, evaluate the weight w’ﬁi) , for each ¢ using equa-
tion (12).

5. Inference: Estimate expected value of functions of interest (say f(-)).
Note that burn in does not affect the inference as the unnormalized par-
ticle set {xt”,wg’),i = 1,...,N + Ny} is still properly weighted.
Compute

N+N, i)y ~ (i

SN f ()

N+N,
Z b

=1

t

6. MCMC based Discriminator: Use the Independent MH sampler to
parse through the set S;. While parsing, generate a random number with
uniform density between 0-1. Then calculate the acceptance probability
using equations (11,12) between the current accepted particle and the par-
ticle under consideration. If the acceptance probability is more than the
random number then accept the new particle as the current particle else
reject it and goto the next particle. In the end we will have a sequence
of N + N, accepted particles. Choose the last N of these as unweighted
samples from p(z¢|y1:¢).

The advantage of this algorithm is that it helps us avoid the expensive re-
sampling step that SISR based implementation would need. Moreover, as will
be illustrated later, this formulation of particle filtering is also flexible.

5 MCMC Based Hardware Architecture

Implementing particle filtering in hardware comes at the price of flexibility.
In a particle filtering sense, flexibility is desired in the following sense. Several
times, we would like to be able to propose more than NV particles for generating
the posterior density. Since Particle Filtering is a Monte Carlo simulation based
technique, having more particles means better inference. Having hardware im-
plementations implicitly forces us to give up this flexibility. As would be il-
lustrated later, this is not the case in the hardware architecture based on MSA.
Our architecture can trivially consider proposition of more than N particles and
choosing best NV out of those.

Expected Inference
Estimation Block
‘ Proposer ’—>‘ Weight Calc Discriminator Q—> St

Figure 2. Sequential Architecture

5.1 Sequential Architecture

Figure 2 illustrates the basic architecture assuming the parallelism in particle
proposition is not exploited.
Proposal Block: The proposal block essentially takes the N particles from the
previous iteration and proposes new particles x+ by sampling the density func-
tion g(x¢|zt—1,ye). Essentially there is a uniform random number generator
that randomly selects z+—1 and uses it to propose x;. The proposition block
is essentially a hardware implementation of this density function g. We can
assume that this proposition block proposes one particle at a time.
Weight Calculator: This block essentially is an implementation of equation 12
and consists of a sequence of adders and a divider. Note that particle proposition
block and the weight computation block can be pipelined.
Discriminator: The Discriminator block essentially is an implementation of
equation 11 in which the parameter « is calculated for the new particle x; and
the previous best particle. A random-number is generated and if it is smaller
than o then the new particle is chosen as the current best else it is discarded.
Expected Inference Estimation Block: This block estimates the inference
function (essentially equation 1). This can also be pipelined with proposal and
weight computation block.

The characteristics of this basic architecture are as follows

1. Sequential: It proposes one particle at a time and therefore needs to be
sequentially executed for generating N particles. The discriminator block
must process one particle at a time (Markov Chain) therefore it evaluates
all particles sequentially. Note that, if we need to generate N particles to
represent the posterior density, then we will have to iterate this architec-
ture N 4+ N, times where N, is the statistical burn-in period. After the
burn in period, we generate N new particles. The previous /N best parti-
cles selected by the discriminator would represent samples of the posterior
density.

2. Flexible:On several occasions, we would be interested in proposing @ >
N particles and choosing N particles to carry over to the next iteration.
This helps in improving the inference (equation 1). The presented archi-
tecture can trivially be extended, if we need to process @ particles and
select NV best of those. We keep proposing Q + IV}, particles and se-
lect the last NV chosen by the discriminator. Therefore, even though this
particle filtering scheme has been implemented in hardware, it is flexible
enough to process more than N particles.

3. Resampling in a traditional sense is not needed

This basic sequential architecture can be made faster by pipeline. This de-
gree of pipelining certainly depends on the nature of the importance function g,
the state transition function p(x|x+—1) which in-turn depend on the applica-
tion. Next, in order to exploit the parallelism in proposal of particles, we present
another architecture which is a refinement of the sequential architecture.

5.2 Parallel Architecture

Figure 3 illustrates the parallel implementation of the architecture. In this
architecture, we have replicated the sequential architecture several times. Each
of the individual sequential architecture works independently. Let us suppose
we need to obtain N samples from the posterior. If we have replicated the
sequential architecture P times then each one would be used to obtain N/P
samples. The only difference lies in the fact that each sequential architecture
will have its own statistical burn-in period, therefore the overall latency for each
sequential architecture would be N, + N/ P. Note that this architecture is also
flexible when it comes to processing @@ > N particles for improved expected
inference.

Expected
Inference

St-1

‘ Proposer H Weight Calc

Discriminator

St

L

Discriminator

St

v !
‘ Proposer ’—)1 WeightvCaIc r»

Discriminator

v v
‘ Proposer ’—)1 Weight Calc %M—‘ St

Figure 3. Parallel Architecture

5.3 Pipelining and Latency Analysis

The basic sequential and parallel architectures presented above can be op-
timized further for speed by using techniques like pipelining. This pipelining
depends upon the nature of the proposal block, the weight computation block
and the discriminator. Let us suppose that the target application is such that the
proposal block can generate one particle every T}, clock steps with an initial
latency of K,. The weight computation block generates the weight of a particle
in K, clocks (latency) and has a throughput of T%,. The Discriminator block
is a purely sequential system that depends on the computation of the previous
step. Therefore its throughput and latency must be the same = 7. Based on
these parameters, and also on the assumption that the latency of particle filter-
ing is not constrained by the expected inference block (and therefore ignored
in this analysis), we present an analysis on how fast the MHA based hardware
architecture can be made. In this sub-section, this analysis is presented for the
sequential architecture only. The analysis for the parallel architecture would
follow trivially.

Given the parameters, let us suppose would would like to process @ par-
ticles. Since there is a burn in associated, the total number of particles that
we need to process is N, + Q. The basic architecture in figure 2 will take
K, + Kw + Tp to produce the first particle ;. Thereafter, it will be able to
produce one particle every max(Tp, Tp, Tw) clock steps. The total latency for
generating N, + @ particles would be (Ny + Q — 1) max(Tp, Tp, Tw) +
Ky + Kuw + Tp clock steps.

This can be made faster by replicating the proposition block and the weight

calculation block. We cannot replicate the discriminator since all particles need
to be processed sequentially. In order to evaluate such a replication procedure
we make the following evaluations.
Infinite Resources Assumption Assuming that the number of resources are
infinite. Therefore we can generate the Q + NN, particles and the associated
weights in just on step of K} + K clocks. The infinite resources does not
affect affect the discriminator since it has to compare all particles sequentially.
Therefore the total latency in the infinite resource assumption is

Kp+ Kw + (Q+ Np)Tp (13)

This is the fastest speed that this particular implementation of particle filter-
ing scheme can obtain.
Finite Resource Constraints

As indicated earlier, replicating the proposal and the weight computation
blocks can lead to speeding up of the particle filtering scheme. But this repli-
cation must be done judiciously. In this discussion we analyze such a resource
constrained scenario. In order to make such an analysis, we make the following
assumptions.

1. The proposition block and the weight calculation block must be replicated
intandem, i.e. if we have two proposition blocks we must have two weight
computation blocks, one dedicated for the other

2. Each proposition and weight calculation pair will therefore have an initial
latency of K = K, + K} and a throughput of 7" = max(T}, T%,) for
generating a particle and the associated weight

3. We replicate this pair R times. Therefore our proposal and weight com-
putation hardware generates R particles per T clock steps with an initial
latency of K.

4. The discriminator block stays the same. We also assume that the buffer
space in between these blocks (which enables data transfer) is not a con-
straint

Under these assumptions, we would like to determine the smallest value of

R > 1 such that the overall latency of processing N + @ particle is equal to
equation 13 (the fastest speed). Since we have replicated the basic proposal-
weight calculation par R times, we get R particles every T clock steps with an
initial latency of K clocks. In order to generate the weight of Q + Ny, particles,
we would take K + ((Q + N, — R)/R)T clocks. The discriminator processes
one particle every Tp clock steps. After the first batch of R particles are gen-
erated it takes T'p * R clocks to process them. If after this latency a new batch
of particles has arrived then it starts processing those, else it waits for the next
batch. Therefore, it generates two scenarios
Tp = R < T This case implies that when a batch of R particles has been
processed, the discriminator must wait for a new batch to arrive. In this case,
the discriminator is not the bottleneck. Therefore the total latency for processing
Q+ N, particlesis K+ ((Q+Ny,—R)/R)T+ R+Tp. Here K +((Q+ Ny —
R)/R)T is the latency for proposing and calculating the weight for Q@ + N,
particles. While these particles are being generated, the discriminator is working
in parallel. Therefore in the end the discriminator takes R T'p to process the
last batch of R particles. All others have already been processed. The smallest
value of this latency happens when R = T'/Tp. At this point the value of this
latency is K + (Q + Np)Tp which is the fastest that can be achieved (in the
infinite resource case).
Tp = R > T In this case the latency is decided by the discriminator. This
scenario implies that every time the discriminator finishes up processing R par-
ticles, new particles are already waiting. Note that this scenario can happen in
two situations, 1) Tp > T'and 2) Tp < T.

Case 1 Tp > T If the discriminator takes more clock steps to process one
particle than it takes for the proposal-weight computation pair to generate one
(essentially T clocks) then any form of replication is wasteful and R should be
1. In this case the total latency is (N, + Q — 1) max(Tp, Tp, Tw) + Kp +
K. + Tp (as indicated earlier). Since Tp > T, where T' = Max(Typ, Tw),
the latency becomes K + (@ + Np)T'p which is the fastest speed.

Case 2 Tp < T In this scenario, it takes the discriminator faster to pro-
cess a particle than the proposal-weight computation pair to generate one. But
Tp=+R > T due to the choice of R. This scenario ensures that every time the dis-
criminator finishes up processing R particles, new particles are already waiting.
Therefore the total latency of processing Q + Iy, particles is decided completely
by the discriminator. Thus the overall latency is simply K + (Q + Ny)Tp (the
fastest speed). Interestingly this latency is independent of R. All we need to do
is choose an R such that Tp = R > T'. The smallest value of R that ensures
this is R = T'/Tp which is the same as the case when Tp * R < T'.

In conclusion we can state that the sequential architecture gives the fastest
speed of Ko, + Kp + (Q + Ny)Tp if

1. fTp > TthenR=1
2. ElseR=T/Tp

Note that this analysis assumes a sequential architecture. Since the parallel
architecture is nothing but a replication of sequential machines, this analysis can
be trivially extended to the parallel case. We omit it for brevity. This ends the
discussion on the architecture which avoids resampling and is also flexible.

6 Experimental Results

Through the experimental results we intend to illustrate 1) One possible ap-
plication of the particle filtering scheme 2) Compare the quality of result ob-
tained by the SISR and the MHA based approaches

6.1 An Application

We demonstrate the efficiency of our proposed architecture on the bearings-
only tracking problem. The problem is that of estimating the motion of a target
based on noisy Direction of Arrival (DOA) observations [10]. The state of the
system at time ¢ is given by the three-tuple x; = (0¢, q¢, ¢+), where 6; is the
estimated DOA at time ¢, g; is the ratio of the velocity v; and range r¢, and ¢
is the headings direction (see figure (4)).

(0]

Figure 4. Figure showing the state describing the
bearings only tracking problem

The observation y; is a frame of noisy measurement of the state 6;. Based on
a sequence of observations we would like to draw some inference about the cur-
rent state of the system. As mentioned earlier the posterior density is completely
defined with the likelihood p(y¢|x¢), the state transition density p(x¢|z¢—1)
and the initial state density function p(zo).

The observation model is of the following form (we omit the details and
derivations)

(ye — 04)T (yr — 04)

log p(yt|ze) = K — 5 (14)
202
The state evolution happens according to the following equations.
_ sinfy_1+qr_1sing_q
tan 6y = cosbt_1+qr_1cospr_1 oL
qt—1
qt = + v2,t
V1HaE_ +2qp—1c0s(8;—1—¢¢—1) (15)

Ot = pr—1+v3,¢
vig ~N(0,02),i=1,...,3

The state transition density p(z¢|z¢—1) can now be defined appropriately
from equation (15). The prior p(zo) is assumed to a Gaussian density with
mean po and variance Xg.

The importance function g(x¢|z+—1y:) is chosen to be the state transition
density p(z¢|x¢—1). The choice of such an importance function has a significant
effect on the hardware architecture. The computation of the acceptance proba-
bility (equations (11,12)) reduces to evaluating the likelihood function p(y¢ |+).

oz, T) :min{%,l} (16)
w'(z¢) = p(ye|ze)

This significantly simplifies the weight computation block. Further, given
the exponential nature of the weight, we can save both hardware and time, if we
deal with “log” quantities instead. That is compute log w’(x+) and log w’ (%),
and subtract the two to get the log of the acceptance probability.

log o(z¢, &) = min {log w'(2) — log w(wy), O} an
From equation (14), we can compute log w’(£) and log w’ (). This usage
of logarithms can save us the time required to perform an exponential operator
and a division for each particle we process. Note that in order for the Markov
Chain to accept/reject a particle it must generate a uniform random number be-
tween 0-1 and make its decision based on Step 6 of the algorithm in the section
describing MHA. If the weights are computed in the log domain, the uniform
random number must also be generated in the log domain.
Figure (5) shows the mean estimates for DOA for the the MHA and the SISR
algorithm. Statistically, both have the similar behavior.

7 Conclusion and Future Work

In this paper we present several techniques for simplified VLSI implemen-
tation of the particle filtering technique. An interesting course of future work

1 T
Observations
MCMC - PF
0.8 Y = = =SISR-PF |1
% .
& ..
0.6 "N, 1
5 e .
3 O e
14 STEeST AT
£ 04f L LN 1
o X
2 N
g N .
E 02 (e 1
Z ~'4 .
it} R
< M
RN
8 of \]
..
L,
-\
02} N4
.8
-0.4 L L L L i
0 20 40 60 80 100

Time in seconds

Figure 5. Figure shows DOA mean estimates for
the MHA and the PF based algorithms.

would be to extend it while considering energy limitations.

References

[1] S. Chib and E. Greenberg. Understanding the metropolishastings algo-
rithm. In American Statistician, volume 49, page 327335, 1995.

[2] A. Doucet, N. Freitas, and N Gordon. Sequential monte carlo methods in
practice, new york: Springer-verlag. 2001.

[3] Q. Gang and R. Chellappa. Structure from motion using sequential monte
carlo methods. In International Journal of Computer Vision, volume
50(1), pages 5-31, 2004.

[4] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and
bayesian restoration of images. In IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, volume 6, pages 721-741, 1984.

[5] N. Gordon, D. Salmon, and A Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. In IEE Proceedings, volume 140, page
107113, 1993.

[6] W. K. Hastings. Monte carlo sampling methods using markov chains and
their applications. In Biometrika, volume 57, pages 97-109, 1970.

[7]1 M. Isard and A. Blake. Contour tracking by stochastic propagation of
conditional density. In European Conference on Computer Vision, page
343356, 1996.

[8] R.E.Kalman. A new approach to linear filtering and prediction problems.
In Transactions of the ASME Journal of Basic Engineering, 82, 1960.

[9] N. Metropolis, A. W. Rosenbluth, M. N Rosenbluth, A. H. Teller, and
E. Teller. Equations of state calculations by fast computing machines. In
Journal of Chemical Physics, volume 21, pages 1087-1091, 1953.

[10] M. Orton and W. Fitzgerald. A bayesian approach to tracking multiple
targets using sensor arrays and particle filters. In IEEE Transactions on
Acoustics, Speech and Signal Processing, volume 50, pages 216-223,
February 2002.

